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In the psychology of reasoning and judgment, the pseudodiagnosticity task has been a major tool for the
empirical investigation of people’s ability to search for diagnostic information. A novel normative
analysis of this experimental paradigm is presented, by which the participants’ prevailing responses turn
out not to support the generally accepted existence of a reasoning bias. The conclusions drawn do not rest
on pragmatic concerns suggesting alleged divergences between the experimenter’s and participants’
reading of the task. They only rely, instead, on the demonstration that observed behavior largely
conforms to optimal utility maximizing information search strategies for standard variants of the
pseudodiagnosticity paradigm that have been investigated so far. It is argued that the experimental results
obtained, contrary to what has recurrently been claimed, have failed to discriminate between normative
and nonnormative accounts of behavior. More general implications of the analysis presented for past and
future research on human information search behavior and diagnostic reasoning are discussed.
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Active search for information from the environment is an es-
sential part of cognition. In human affairs, looking for additional
information is often of crucial importance, as decision problems
with limited evidence initially available are commonplace. Indeed,
when competing hypotheses have to be compared, relevant infor-
mation often has to be identified and selected from a huge amount
of potentially available data. As resources (e.g., time, money) are
typically scarce, moreover, information search has to be selective.
It is therefore important to understand whether people’s informa-
tion search strategies allow them to identify highly diagnostic
items out of all the accessible data.

As a matter of fact, the search for evidence in order to evaluate
hypotheses has been seen as a central issue for the study of
thinking, with important implications in applied settings (Baron,
2000, pp. 4–15). Medical practice is a case in point. When facing
a clinical problem, the need often arises to acquire additional
information under resource constraints (e.g., performing some
diagnostic tests but forgoing others). The effectiveness of treat-
ment decisions, then, clearly rests on the physician’s ability to
selectively search for relevant clinical evidence on the basis of an
appropriate assessment of how it relates to the diagnostic hypoth-
eses under consideration.

In the epistemological, psychological, and medical literature,
Bayes’s theorem is often assumed as a convenient framework to
assess the diagnosticity of an observed datum or piece of evidence
relative to a hypothesis set (see Fischhoff & Beyth-Marom, 1983;
Good, 1950; Sackett, Haynes, & Tugwell, 1985). In its well-known
odds form, the theorem can be written as follows (P stands for a
probability function and “¬” for logical negation):

P�h|e�

P�¬h|e�
�

P�h�

P�¬h�
�

P�e|h�

P�e|¬h�
(1)

Reading from the left, the three terms in the equation are as
follows: the posterior odds of hypothesis h (vs. ¬h) being true
given all that is known after the receipt of information e; the prior
odds of h (vs. ¬h) being true given all that is known before the
receipt of e; and the likelihood ratio of h (vs. ¬h) relative to e. The
likelihood ratio is commonly used to capture the diagnostic value
of evidence e relative to h versus ¬h. More precisely, (a) if
P(e|h)/P(e|¬h) � 1, then e provides support for h against ¬h, for
h surpasses ¬h as a predictor of e; as a consequence, the posterior
odds of h (¬h) will be higher (lower) than the prior ones; (b) if
P(e|h)/P(e|¬h) � 1, then e provides support for ¬h against h, for
¬h surpasses h as a predictor of e; as a consequence, the posterior
odds of h (¬h) will be lower (higher) than the prior ones; (c) if
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P(e|h)/P(e|¬h) � 1, then e is equally consistent with both h and
¬h, as neither of them predicts e better than the other; as a
consequence, the posterior odds remain unchanged relative to the
prior ones. In Cases (a) and (b), i.e., when the likelihood ratio
departs from 1) evidence e is said to carry some diagnostic value,
whereas in Case (c), e makes no contribution in discriminating h
and ¬h, thus having no diagnostic value relative to the hypothesis
set at issue.

More or less elaborated measures have been devised to quantify
to what degree the likelihood ratio departs from 1, thus how large
is the impact and diagnostic value of a given e in comparing the
credibility of hypothesis h versus ¬h (see Crupi, Tentori, &
Gonzalez, 2007; Fitelson, 2001; Good, 1950). Notably, a highly
diagnostic piece of evidence e having been acquired does not
necessarily imply that the probability of one hypothesis becomes
high and that of the alternative low, for posterior odds also depend
on the prior ones. High diagnosticity means only that the proba-
bility of h versus ¬h significantly changes as a consequence of
coming to know e. Also notice that a piece of evidence e can
strongly support hypothesis h even if P(e|h) is rather low, provided
that e is even more unlikely given ¬h. Symmetrically, e can
significantly support ¬h even if P(e|h) is quite high, provided that
e is even more likely given ¬h.

People’s ability to appropriately appreciate diagnosticity has
been claimed to be severely limited on the basis of psychological
findings involving a rather widespread experimental procedure,
i.e., the “pseudodiagnosticity” paradigm. According to Doherty,
Chadwick, Garavan, Barr, and Mynatt’s (1996) survey, this para-
digm amounts to one of the two most popular experimental devices
explicitly devoted to the investigation of people’s understanding of
the diagnostic implications of data (the other being represented by
the “Vuma planet” scenario, originally introduced by Skov &
Sherman, 1986, to be discussed later on along with other studies
outside the pseudodiagnosticity paradigm). It is also the one that
has attracted relatively more attention and effort, presumably be-
cause human performance on the pseudodiagnosticity task has
been seen as distinctively poor.

Our present aim is to question the commonly accepted analysis
of the pseudodiagnosticity task as normatively unsound and to
replace it with a more appropriate treatment. Notably, we do not
mean to contend the Bayesian framework; rather, we will argue
that it has been importantly misapplied. Our contribution is theo-
retical in nature, with a range of implications for empirical re-
search. First, as the psychology of reasoning still exhibits lively
debated concerns about diagnoses of human rationality versus
irrationality, it remains of interest to scrutinize the tenability of
such diagnoses. It will be argued that, on the basis of a misguided
reading of the task, pseudodiagnosticity results prompted hasty
conclusions on people’s allegedly poor performance in informa-
tion search, thus misleadingly contributing to belief in so-called
confirmation bias and the perception of its widespread conse-
quences. Second, it will be shown that a number of relevant studies
exhibit shortcomings in experimental design, methods, or results
reporting that emerge from a lack of theoretical analysis. Future
research on humans’ understanding of diagnosticity is thus ex-
pected to significantly profit from having a rigorous treatment of
the pseudodiagnosticity task at hand.

The rest of the article is organized as follows: After reviewing
the experimental evidence available and its usual interpretation, we

will argue that the task of the pseudodiagnosticity paradigm has
not been analyzed thoroughly enough. Upon closer scrutiny, ob-
served behavior in standard versions of this task turns out to be
largely consistent with a novel compelling normative analysis of
the problem. Inquiries with other variants of the task occurring in
the pseudodiagnosticity literature will also be discussed and found
to have reported results that are inconclusive in light of the current
analysis. Overall, thus, the results available to date do not con-
vincingly support the pessimistic conclusion that people fall short
of a sound assessment of diagnosticity. As pointed out in the
subsequent discussion, however, this does not imply the opposite
conclusion either, i.e., that human agents generally evaluate diag-
nostic value in an optimal fashion. We will argue instead that
future tests of people’s ability to assess diagnosticity will need to
be conceived as clearly discriminating between appropriate models
of rational behavior and nonnormative accounts of human reason-
ing.

Reviewing Pseudodiagnosticity

The Experimental Paradigm

In the pseudodiagnosticity task, participants are presented with
two mutually exclusive and jointly exhaustive hypotheses, h versus
¬h (e.g., two possible illnesses, one and only one of which is said
to affect a certain patient). The comparison between the hypothe-
ses involves two different data f and g already observed (e.g., the
presence of two symptoms in the patient considered). The proba-
bilistic relationships between the available data (f and g) and the
hypotheses under consideration (h vs. ¬h) can then be represented
in a 2 � 2 array as shown in Table 1. Participants are informed that
precise values are available for the four likelihoods P(f|h), P(f|¬h),
P(g|h), and P(g|¬h), reflecting expected frequencies in relevant
samples. P(f|h), for instance, would amount to the expected rate of
occurrence of symptom f in a suitable sample of patients for which
diagnosis h holds. In fact, participants are initially provided with
one such likelihood; for instance, they are given the value of P(f|h),
as seen in Table 1. Then they are told that they can ask for only one
among the three still-concealed values in the table. Their task is to
indicate which value they would prefer to be given in view of a
decision about h versus ¬h. Participants are thus instructed to
select what they see as the additional piece of information most
useful to the ultimate goal of a subsequent choice between com-
peting hypotheses.

In an effort to control for possible confounds, most researchers
have chosen hypotheses h and ¬h and data f and g so as to
discourage participants from elaborating any specific conjecture
concerning the undisclosed likelihood values. For instance, should
f and g bear an appreciably strong causal connection, then a

Table 1
A Schematic Illustration of Pseudodiagnosticity Scenarios

Data

Hypotheses

h ¬h

f Likelihood provided Likelihood not provided
g Likelihood not provided Likelihood not provided
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relatively high value of the initially given likelihood concerning f
would suggest a relatively high value of the corresponding likeli-
hood concerning g. Such an inference has typically been prevented
by choosing f and g as indicating conditions which by and large
appear to be independent (e.g., symptoms such as cough and leg
pain). Moreover, to prevent participants from elaborating their
own estimates of (ranges of most plausible) values for the un-
known likelihoods on the basis of their background knowledge,
researchers have usually presented hypotheses h and ¬h as refer-
ring to abstract categories (e.g., disease A and disease B). As usual
in the inquiry on human thinking, these cautions have been taken
to let “the purest kind of reasoning” occur in the experimental
setting (Kern & Doherty, 1982, p. 104).

We will label standard pseudodiagnosticity task the class of
experimental problems in which the foregoing conditions are ful-
filled. The standard version of the task includes a majority of
instances in which h and ¬h have been presented as having an
equal initial probability (or base rate) of .50 and the anchor value
provided has been ranging from moderately high (such as .58, in
Wolf, Gruppen, & Billi, 1985, Case 2) to high (such as .84, in Kern
& Doherty, 1982). Occasionally, low anchor values have been
employed, with either equal or unequal base rates (see Mynatt,
Doherty, & Dragan, 1993, Exp. 2, and Wolf et al., 1985, Case 3,
respectively). These variants still belong to the standard version of
the task as presently defined. It should be noted, however, that
nonstandard versions have also been conceived, to deliberately let
participants use their background knowledge to elaborate estimates
for at least some of the initially unknown likelihoods (see Feeney,
Evans, & Venn, 2000, 2008).

In our treatment, we will analyze standard versions of the
pseudodiagnosticity task first. Nonstandard variants will be dis-
cussed afterward. Before all that, however, we will have to further
survey the pseudodiagnosticity literature in terms of the results
typically obtained, their commonly accepted interpretation, and the
consequences drawn.

Usual Interpretation, Results, and Consequences

The usual interpretation of the pseudodiagnosticity task has
been said to rest on Bayesian rationality, and specifically on the
Bayesian notion of diagnosticity as described in the introduction
above. In essence, the commonly accepted analysis runs as fol-
lows: First, it is claimed that appropriately revised probabilities of
h and ¬h “can be calculated only if both the probability of a piece
of data given the hypothesis under test, P(f|h), and the probability
of the same piece of data given the alternative hypothesis, P(f|¬h),
are known” (Doherty, Mynatt, Tweney, & Schiavo, 1979, p. 112).
That is, in a Bayesian approach, information can be diagnostic
only if it gives the likelihood ratio of two hypotheses (see Evans &
Over, 1996b, p. 65; also see Manktelow, 1999, pp. 134 ff). Recall
that initially participants have one likelihood value at their disposal
(see Table 1) and are constrained to select only one further like-
lihood. It is pointed out that the value aligned with the given
likelihood down the column in the table does not allow for the
completion of any likelihood ratio. The same holds for the value
aligned with the given likelihood along the diagonal. It is then
asserted that such data are completely worthless in a rational
approach to the experimental task. Finally, since the value aligned
with the given likelihood along the row does allow for the com-

pletion of one of the likelihood ratios (i.e., the ratio between the
probabilities of one single already known fact, f, under the two
competing hypotheses h and ¬h), it is concluded that Bayesian
standards prescribe the selection of the row value as rationally
mandatory.

Experimentally observed behavior has shown a marked depar-
ture from such a prescription. The robust finding across a number
of standard problems involving a relatively high anchor value and
equal priors has been a widespread tendency to select the column
value, i.e., precisely one of the allegedly worthless pieces of
information. Coupling this kind of result with the normative read-
ing summarized above, Doherty et al. (1979) concluded: “The
subjects actively chose irrelevant information and ignored relevant
information which was equally easily available” (p. 119). Notably,
a different pattern of responses has been documented by Mynatt et
al. (1993, Exp. 2) with a low anchor (and equal priors): With an
initially given likelihood of .35, the majority of their participants
did choose to search for the row value.

The tendency to select a cell value other than in a row along a
relatively high anchor has been seen as a strong demonstration that
in this information search task “the majority of subjects have little
or no intuitive understanding of the implications of Bayes’s theo-
rem” (Mynatt et al., 1993, p. 762). Such a behavior has thus been
labeled pseudodiagnosticity and connected to the overarching pat-
tern of so-called confirmation bias (Doherty et al., 1979; Klayman,
1995; Nickerson, 1998). Accordingly, efforts have been devoted to
the experimental investigation of factors and interventions that
may bring participants’ responses in better alignment with the one
usually identified as rationally correct (see Evans, Venn, &
Feeney, 2002, Exp. 2; Wolf, Gruppen, & Billi, 1988).

A major candidate explanation of the experimental findings
obtained has been proposed in terms of biasing processes of
focalization. According to this proposal, a high anchor value
connecting f and h would typically establish h as the focal hypoth-
esis to the detriment of the alternative ¬h, thus inducing many
participants to find out something more about the former (the
column value) rather than about the latter (the row value). On such
a basis, Mynatt et al. (1993) even speculated that “people can only
think of one hypothesis at a time” (p. 774). They postulated,
moreover, that a low anchor value would typically shift the focus
on ¬h, thus inhibiting the otherwise common selection of the
column value, which would account for the observation of more
choices for the optimal option (the row value) with a low anchor
(see Evans, 2007, for a more recent and detailed discussion along
similar lines).

Results of pseudodiagnosticity experiments have been seen as
having rather far-reaching consequences in discussions on human
performance, human rationality, and their limitations. It has been
suggested that pseudodiagnostic behavior may contribute to erro-
neous inferences, thus nonoptimal actions, for instance in clinical
practice (Doherty et al., 1996, p. 653). Indeed, pseudodiagnosticity
has been claimed to represent a major class of errors in decision
making by inexperienced physicians (Wood, 1999, p. 602). More
generally, Fischhoff and Beyth-Marom (1983) have identified the
tendency to ignore the likelihood of ¬h when evaluating evidence
for h as a “powerful metabias” in human reasoning (p. 257). Stich
(1990) resorted to the pseudodiagnosticity phenomenon as a cru-
cial example countering philosophical and evolutionary claims that
irrationality is impossible (pp. 7 ff), and Dawes (2001) presented
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findings on pseudodiagnostic behavior as fostering the conclusion
that in fact irrationality is abundant in everyday life as well as in
expert judgment (chaps. 1 and 5).

A New Analysis: Framework and Assumptions

Consider again the standard pseudodiagnosticity task as illus-
trated in Table 1. Is the selection of the row value really the
optimal solution or even the only rational strategy (Doherty et al.,
1979, p. 117)? These conclusions crucially rest on the assumption
that this value is “the only information that will allow normatively
appropriate computations” (Doherty et al., 1996, p. 645). Our
major aim here is to question the latter claim by presenting a new
formal analysis of the task. As a consequence, the above conclu-
sions will be shown to remain unsupported.

This and the next section are arranged as follows: First, we will
describe and analyze the goal that the experimental problem and
instructions suggest. We will then identify and briefly expose the
appropriate (Bayesian) normative model for information selection
to fit the experimental problem and the relevant goal. After re-
viewing the probabilistic structure of the task, we will apply that
normative model to it.

The treatment to follow will require a certain amount of for-
malism. For ease of recall, a comprehensive summary of the
notation and symbols introduced and employed throughout the
article appears in Table 2.

Expected Gain in Epistemic Utility

Consider a set of mutually exclusive and jointly exhaustive
hypotheses. We will say that an agent acts as a truth seeker iff she
simply attributes utility 1 to the choice of the true hypothesis and

utility 0 to the choice of any false hypothesis. A truth seeker’s
utilities can be seen as epistemic in the sense that the agent cares
only for capturing the true state of the world in a given domain of
inquiry as defined by the partition of hypotheses at issue.

In the pseudodiagnosticity paradigm, the partition simply
amounts to complementary hypotheses h and ¬h. A truth-seeking
agent would then assess utilities as illustrated in Table 3.

Recall that participants are asked to indicate their preferred
information search in view of the ultimate aim of choosing h
versus ¬h. Also, they are usually provided with no hint whatsoever
as to how desirable hitting h would be as compared with hitting ¬h
or as to how serious missing h would be as compared with missing
¬h. To that extent, we claim that participants are encouraged to act
as truth seekers. Notably, this assumption is in line with the remark
explicitly made by Mynatt et al. (1993, p. 773) that the pseudodi-
agnosticity paradigm controls for motivational factors, as no dif-
ferential payoff for confirming or disconfirming either h or ¬h is
present.

For a truth seeker, the expected utility of choosing any hypoth-
esis h simply amounts to the probability of that hypothesis. In fact,

EU(choosing h) � [P(h) � U(hitting h)] � [P(¬ h)

� U(missing ¬ h)] � [P(h) � 1] � [P(¬ h) � 0] � P(h). (2)

When choosing among hypotheses, a rational truth seeker will
simply select the most probable one, thus maximizing expected
utility. How should a truth seeker behave when searching for
information? The short answer is: as any utility-maximizing agent
would. When a choice is needed, she should always prefer and
pursue the search for information providing the highest gain in
expected utility. For a truth seeker, such a gain amounts to the
difference between the expected probability of the hypothesis that
will be chosen after the (still unknown) piece of information has
been eventually acquired and the probability of the hypothesis that
would be presently chosen (i.e., without any search for information
being pursued).

The general formal model expressing this measure of the value
of an information search has been presented by Baron (1985, chap.
4), following Savage (1954, chap. 6). Let H be a finite set of
mutually exclusive and jointly exhaustive hypotheses at issue.
Then let X be the set of possible alternative values of a variable of
interest. Our present point is the evaluation of the expected utility
gain of finding out the (still unknown) true value within X for a
choice within hypothesis set H.

Elaborating on Equation 2, a truth seeker’s expected utility for
choosing a hypothesis within set H without further inquiry, here
denoted as EU(H), equals simply the probability of the most likely
hypothesis in the set, that is,

EU�H� � max
hi � H

�P�hi��. (3)

By a straightforward extension of Equation 3, the expected utility
of choosing a hypothesis after finding out a given value x � X,
denoted as EU(H|x), amounts to the probability of the most likely
hypothesis within H conditional on knowing x, that is,

EU�H|x� � max
hi � H

�P�hi|x��. (4)

Finally, the expected utility of a choice subsequent to an informa-
tion search about X, calculated when the sought piece of informa-

Table 2
Notation and Symbols Employed

Notation or symbol Definition

EU(H) Expected utility of a choice in hypothesis set H
EU(H|x) EU of a choice in H given evidence x
EUX(H) EU of a choice in H following a (yet to be

performed) search about X
EUX(H|y) EU of a choice in H following a (yet to be

performed) search about X given evidence y
�EU(H, X) EU gain associated to a (yet to be performed)

search about X for a choice in H
�EU(H, X|y) EU gain associated to a (yet to be performed)

search about X for a choice in H given
evidence y

h, ¬h Hypotheses at issue in the pseudodiagnosticity task
H � {h, ¬h} Hypothesis set in the pseudodiagnosticity task
f, g Known data in the pseudodiagnosticity task
a Initially provided (anchor) likelihood value
r Row cell value
c Column cell value
d Diagonal cell value
xa, xr, xc, xd Continuous variables for the corresponding cells
R, C, D Information search options in the

pseudodiagnosticity task
	 Shorthand for P(h), the initial probability of h in

the pseudodiagnosticity task
	a Shorthand for P(h|f � g � a), the probability of h

given the anchor value a along with data f, g
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tion has not been acquired yet, will be denoted as EUX(H). It is
computed as the expected value of the quantity in Equation 4
across all possible outcomes of the search concerning X, as
follows:

EUX�H� � �
X

max
hi � H

�P�hi|x��p�x�dx. (5)

In the form displayed here, Equation 5 implies X being a contin-
uous set of possible values for variable x ( p denotes the relevant
probability density function). The expected utility gain associated
with an information search about X in view of a choice within H,
here denoted as �EU(H, X), amounts to the simple difference
between the quantities in Equations 5 and 3, respectively; that is,

�EU(H, X) � EUX(H) 
 EU(H). (6)

In order to show how this model applies to standard problems in
pseudodiagnosticity experiments, we will need to have a fresh look
at the probabilistic structure of those problems.

Assumptions

We will now state a set of assumptions for our analysis along
with some relevant points of notation. Relying on a 2 � 2 array
such as the one instantiated in Table 1, let us define four variables
xa, xr, xc, and xd for the values in the table cells (subscripts stand
for anchor, row, column, and diagonal, respectively). Variables xa,
xr, xc, and xd are assumed to be continuous and distributed over
[0, 1]. Letters a, r, c, and d will denote corresponding values. We
will also stipulate to employ the label h for the hypothesis to which
the initially provided anchor value a (as well as the column value)
refers. The alternative hypothesis (to which both the row and the
diagonal value refer) will thus be labeled ¬h (notice that the
stipulated notation can be applied to any variant of Table 1, no
matter which likelihood is initially provided, that is, where the
anchor value is located in the table). The standard version of the
pseudodiagnosticity paradigm will be modeled by providing a
rational agent facing the experimental task with a set of four basic
assumptions, to be stated and motivated below.

As described earlier, participants in the pseudodiagnosticity task
are given (or otherwise assumed to entertain) base-rate or prior
values for the hypotheses at issue, h and ¬h. Importantly, such
probabilities are meant to be “prior” to the consideration of data f and
g and to be unaffected by what the content of the likelihood table
may happen to be. Notice that the expression P(h|a � r � c � d)

denotes the probability of h given a fully disclosed likelihood table
but with f and g not being known as data. In our current frame-
work, thus, participants are provided with the following assump-
tion about priors:

Priors: For whatever a, r, c and d, P(h|a � r � c � d) � P(h).

Second, we will assume our agent to rely on the probabilistic
independence of f and g, at least conditional on h and ¬h, and once
again, for any combination of cell values:

Data (conditional) independence: For whatever a, r, c, and d,

P(f � g|h � a � r � c � d) � P(f|h � a � r � c � d)

� P(g|h � a � r � c � d) � ac;
and

P(f � g|¬ h � a � r � c � d) � P(f|¬ h � a � r � c � d)

� P(g|¬ h � a � r � c � d) � rd.

Conditional independence of the given data f and g has been
explicitly mentioned as a basic assumption for the usual interpre-
tation of the task (Mynatt et al., 1993, p. 762). Indeed, as already
noticed, standard pseudodiagnosticity tasks have typically in-
volved f and g as indicating conditions that appear to be indepen-
dent in the sense above. This is particularly clear in clinical
scenarios, wherein pairs of symptoms such as cough and leg pain
or fever and rash have been employed (Kern & Doherty, 1982;
Wolf et al., 1985). Such pairs of symptoms represent possible
effects of a common cause, that is, an underlying disease (referred
to by either hypothesis h or ¬h), while apparently bearing no direct
physiopathological connection. It is a widely accepted principle
that common causes “screen off” their effects, that is, make them
conditionally independent (Pearl, 2000; Reichenbach, 1956;
Spirtes, Glymour, & Sheines, 1993).

Finally, the two following further conditions will be posited:

Uniformity: Variables xa, xr, xc, and xd are uniformly distrib-
uted.

Likelihood independence: Variables xa, xr, xc, and xd are
independent.

On the whole, the latter assumptions are meant to capture a trait
that has been deliberately pursued by researchers in devising
variants of the standard task, i.e., the neutralization of the other-
wise possible impact of background knowledge on expectations
about the cell values. The usual reading of the standard pseudodi-
agnosticity task has been presented and defended precisely on the
basis that “no valid grounds exist for making reasonable a priori
estimates” about such values (Mynatt et al., 1993, p. 762). Now, it
is a celebrated epistemological principle (the principle of indiffer-
ence) advocated in various guises by chief Bayesian theorists such
as Keynes (1921), Jeffreys (1939), and Carnap (1962) that a
rational agent should assign equal probabilities to two (or more)
incompatible events unless reasons are known (or believed) to do
otherwise. Given that, the uniformity assumption seems an entirely
natural way to model the participants’ basic state of ignorance as
set by the standard pseudodiagnosticity task. The likelihood inde-
pendence assumption, moreover, implies that knowledge of the

Table 3
A Truth Seeker’s Utilities

Chosen hypothesis

True hypothesis

h ¬h

h
Outcome Hitting h Missing ¬h
Utility 1 0

¬h
Outcome Missing h Hitting ¬h
Utility 0 1
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initially provided value a (or of any other value, if subsequently
discovered) would not, by itself, alter the above state of ignorance
as to the cells left undisclosed.

The Epistemic Utility Analysis at Work

Preliminary Results: No Information Search

A crucial tenet of the usual reading of the pseudodiagnosticity
task is the claim that updating the priors of h and ¬h by norma-
tively appropriate computations is allowed if and only if the
likelihood value in row r is disclosed along with the initially
provided likelihood a. Before presenting a full-fledged epistemic
utility analysis of the task, then, it will be useful to assess, as a
preliminary step, the tenability of this claim. We will now argue
that it is actually false.

To begin with, consider a perfectly Bayesian truth-seeking agent
who has to face a scenario such as the one illustrated in Table 1.
Also suppose that the agent endorses the priors, data indepen-
dence, uniformity, and likelihood independence assumptions. Fi-
nally, suppose that this agent does not have the opportunity to
search for any of the missing pieces of information (r, c, or d). She
just has to choose h or ¬h, with the only information given being
the precise value of a single likelihood (a), along with data f and
g. How should such a task be carried out?

By assumption, the agent would maximize expected utility by
simply choosing the most probable hypothesis. By the usual reading
of the pseudodiagnosticity experimental task, however, the agent
cannot but make a random choice, the claim being that, even if f and
g are known and are potentially relevant data, priors cannot be
appropriately updated on the basis of the provided value a alone (i.e.,
in the absence of any completely specified likelihood ratio). A de-
tailed probabilistic analysis, however, yields a different conclusion.

We are interested in the probabilities of h versus ¬h given data f
and g along with knowledge that the anchor likelihood amounts to a
certain value a, that is, P(h|f � g � a) and P(¬h|f � g � a). Now, if xr,
xc, and xd are taken as continuous variables over [0, 1] and the priors,
data independence, uniformity, and likelihood independence assump-
tions are made, then the following demonstrably holds (for ease of
notation, 	 is employed to denote the prior probability of h taken as
a parameter, that is, not fixed at any specific value):

P�h|f � g � a� �
a	

a	 � 1⁄2�1 � 	�
(7a)

and

P�¬h|f � g � a� �
1⁄2�1 � 	�

a	 � 1⁄2�1 � 	�
. (7b)

The formal derivation of Equations 7a and 7b is carried out in
detail in Appendix A. For our present purposes, the crucial point is
that, once the value a is revealed (along with knowledge of data f
and g), posterior probabilities of h and ¬h can be computed
accordingly and will usually depart from the background priors,
thus implying a nontrivial updating even with only one table value
being provided. In particular, if the additional condition is included
that priors are equal (i.e., .50), then one has the following simple
functions of a (graphically plotted in Figure 1):

P�h|f � g � a� �
a

a � 1⁄2
(8a)

and

P�¬h|f � g � a� �
1⁄2

a � 1⁄2
. (8b)

By a straightforward instantiation of Equation 4 above, the ex-
pected epistemic utility of choosing h versus ¬h given a, without
any further search for information being pursued, is

EU(H|f � g � a)

� max[P(h|f � g � a), P(¬ h|f � g � a)]. (9)

As implied by Equations 7a and 7b, P(h|f � g � a) and P(¬h|f � g �

a) can be immediately ranked, depending on the priors and a. A
rational agent would then be able to make a principled, nonran-
dom utility-maximizing choice of h versus ¬ h on the basis of
the value of likelihood a alone (along with given data f and g).
As to the special case of equal priors, Equations 8a and 8b show
(and Figure 1 illustrates) that indeed it all depends on whether
a is higher or lower than .50. For example, if priors are equal
and a � .65 (as in Mynatt et al., 1993, Exp. 1), then P(h|f � g �

a) � .65/(.65 � .50) � .57 and P(¬ h|f � g � a) � .50/(.65 �
.50) � .43.

Capturing the Standard Pseudodiagnosticity Task

Our next step is facing this question: Given her stated assump-
tions, how should a rational (perfectly Bayesian) truth-seeking
agent search for information in a standard pseudodiagnosticity
task? The agent has three alternative strategies available to gain
additional information, i.e., searching for the row, the column, or
the diagonal value, labeled search strategies R, C, and D, respec-
tively, hereafter. The issue is then to compute the expected utility
gain associated with each option, that is,

�EU(H, R|f � g � a)

� EUR(H|f � g � a) – EU(H|f � g � a) (10)

Figure 1. Updated probabilities of h versus ¬h as functions of a, assum-
ing equal priors.
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�EU(H, C|f � g � a)

� EUC(H|f � g � a) – EU(H|f � g � a) (11)

�EU(H, D|f � g � a)

� EUD(H|f � g � a) – EU(H|f � g � a) (12)

The computation of quantity EU(H|f � g � a) has already been
addressed in the above paragraph. Now suppose a row search has
been performed and value r has been discovered. Then, by Equa-
tion 4 above, we would have

EU(H|f � g � a � r)

� max[P(h|f � g � a � r), P(¬ h|f � g � a � r)]. (13)

On the basis of Equation 5 above, in order to have the expected
utility of choosing h versus ¬h when an information search about
r is going to be pursued but the value of r has not been discovered
yet, we have to compute the mean value of EU(H|f � g � a � r)
across the possible values of r, that is,

EUR(H|f � g � a) � �
0

1

max�P�h|f � g � a � xr�,

P�¬h|f � g � a � xr�P�xr|f � g � a�dxr. (14)

For ease of notation, we will now introduce 	a as denoting
P(h|f � g � a). Notice that, by the foregoing analysis, this
quantity is perfectly defined in any instance of the standard
pseudodiagnosticity task as depending on P(h) and the anchor
value a (see Equation 7a). By the priors, data independence,
uniformity, and likelihood independence assumptions, along
with Equations 13 and 14, Equation 10 can be solved as
determining the value of �EU(H, R|f � g � a) as an algebraic
function of 	a as follows:

�EU�H, R|f � g � a� � �
	a

2

4�1 � 	a�
for 0 � 	a � 1⁄2

�2 � 3	a�
2

4�1 � 	a�
for 1⁄2 � 	a � 2⁄3

0 for 2⁄3 � 	a � 1.

(15)

It may be useful to comment on the meaning of the last row of
Equation 15. Suppose that 	a—that is, P(h|f � g � a)—is higher
than 2⁄3. Then it can be shown that, in order to switch the current
choice for the most probable hypothesis h to a subsequent choice
for ¬h, the actual value r should turn out to be higher than 1, which
is of course impossible. (The expression for P(h|f � g � a � r) being
employed for this result is displayed in Appendix 1.) So, if 	a �
2⁄3, then hypothesis h will still be chosen after a row search, no
matter what. For this reason, the expected utility of such a
subsequent choice will remain 	a, just as it is with no infor-
mation search being pursued. In other terms, this is a class of
cases in which a row search provides no gain in expected
epistemic utility.

A detailed derivation of Equation 15 appears in Appendix B,
along with the calculations yielding the corresponding expressions
for �EU(H, C|f � g � a) and �EU(H, D|f � g � a), that is,

�EU�H,C|f � g � a� � �
0 for 0 � 	a � 1⁄3

�3	a � 1�2

4	a

for 1⁄3 � 	a � 1⁄2

�1 � 	a�
2

4	a

for 1⁄2 � 	a � 1

(16)
and

�EU�H, D|f � g � a� � �
	a

2

4�1 � 	a�
for 0 � 	a � 1⁄2

�2 � 3	a�
2

4�1 � 	a�
for 1⁄2 � 	a � 2⁄3

0 for 2⁄3 � 	a � 1.

(17)

Once again, null values of expected utility gain reflect classes of
cases in which the outcome of the corresponding information
search cannot possibly alter current hypothesis choice.

Equations 15–17 represent the gain in expected utility of a
search about r, c, or d for a subsequent choice of h versus ¬ h,
as calculated when the actual value of the selected variable is
not available yet. They will thus allow a comparison of the
usefulness associated with each information search strategy
available in standard pseudodiagnosticity experimental proce-
dures.

Optimal Versus Observed Behavior Again

A Theorem

A remarkable fact immediately emerges from Equations 15
and 17: �EU(H, R|f � g � a) and �EU(H, D|f � g � a) amount
to identical algebraic expressions. Thus, searching for either the
row or the diagonal value in the standard pseudodiagnosticity
task provides the same expected utility gain for a truth-seeking
rational agent. Recall that strategies R and D are critically
opposite for the usual reading: The latter, in contrast to the
former, is said to be associated with worthless information and
therefore irrational behavior. In our utility-based analysis, on
the contrary, R and D turn out to be formally indistinguishable
in the standard case. A straightforward consequence is then
that, even if it were optimal (which it often is not—see below),
search strategy R could not possibly be the only rational option,
as has been usually claimed.

We can now come to the core result of the present analysis, that
is, the assessment of the usefulness of information search strategy
C as compared with R (and, equivalently, with D). How are
quantities �EU(H, C|f � g � a) and �EU(H, R|f � g � a) � �EU(H,
D|f � g � a) related for different possible values of the parameter
	a as implied by the priors and the anchor? This relation turns out
to be governed by the following theorem:
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Theorem: In standard pseudodiagnosticity tasks (i.e., under the
priors, data independence, uniformity, and likelihood indepen-
dence assumptions):

for 	a � 0, 1⁄2, 1, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);

for 0 � 	a � 1⁄2, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);
and

for 1⁄2 � 	a � 1, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a).

For a proof, see Appendix C. For an informal suggestion of the
underlying analysis, consider the following: Suppose that 	a—that is,
P(h|f � g � a)—is moderately high, say .60, so that hypothesis h
should be initially chosen. Then there are quite a few low values to be
possibly found in the column cell that would alter hypothesis selection
with rather dramatic effects. For instance, should it turn out that,
say, c � .10, then it can be computed that the probability of ¬ h
would steeply jump up from .40 to about .77 (the equations
being employed once again come from Appendix A). On the
other hand, comparably high values to be possibly found in the
row (or diagonal) cell would still change hypothesis selection,
but not with comparably large effects. To illustrate, should it
turn out that r � .90, then it can be computed that the proba-
bility of ¬ h would rise from .40 and surpass h but still be just
about .55. This reflects a column search being of higher ex-
pected value with a high 	a.

An exactly opposite pattern obtains in the symmetric case 	a �
.40. If so, then it can be computed that a .90 high value to be
possibly found in the column cell would alter hypothesis selection
from an initial choice for ¬h to a subsequent choice for h with a
final probability of .55 only, whereas a .10 low value to be possibly
found in the row (or diagonal) cell would set the posterior of h to

.77. This reflects a row (or diagonal) search being of higher
expected value with a low 	a.

Standard Version With Equal Priors

Our theorem above has, on the basis of Equations 8a and 8b, an
immediate corollary concerning standard versions of the pseudodi-
agnosticity task in which equal priors are assumed.

Corollary: In standard pseudodiagnosticity tasks with equal
priors, that is, P(h) � P(¬h),

for a � 0, 1⁄2, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);

for 0 � a � 1⁄2, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);
and

for 1⁄2 � a � 1, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a).

A relevant graphical representation emerges from Figure 2,
wherein quantities �EU(H, C|f � g � a) and �EU(H, R|f � g � a) �
�EU(H, D|f � g � a) are plotted together for all values of a,
corresponding to different possible experimental scenarios.

It can now be seen that the divergence of the present analysis
from the commonly adopted reading of the task is stark. First of
all, consider the values of the anchor that have usually been
employed in standard scenarios with equal priors, from moderately
low (such as .35, as in Mynatt et al., 1993, Exp. 2) to high (such
as .84, as in Kern & Doherty, 1982). As far as these values are
concerned, no search strategy turns out to be completely worthless
for a Bayesian truth seeker: Each of them implies at least some
expected gain in epistemic utility.

Furthermore, searching for the column value (search strategy
C), usually taken as indicating a cognitive bias, is in fact optimal

Figure 2. Standard pseudodiagnosticity tasks with equal priors: the expected utility gain of alternative search
strategies as functions of a.
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provided that the value of a specified in the experimental scenario
exceeds the threshold of .50. To illustrate, suppose that a � .65, as
in Mynatt et al. (1993, Exp. 1); then search strategy C (chosen 59%
of the times in this experiment; Mynatt et al., 1993, p. 769) yields
an expected utility gain of about .084 versus about .053 as pro-
vided by search strategy R or D. This amounts, respectively, to a
relative increase of 15% versus less than 10% of the initially
expected utility EU(H|f � g � a), which is about .57, corresponding
to P(h|f � g � a). Even more remarkable, the convergence between
optimal and observed behavior holds for low-anchor experimental
scenarios as well. In fact, suppose that a � .35, as in Mynatt et al.
(1993, Exp. 2); then search strategy R or D (chosen 57% of the
times in this experiment; Mynatt et al., 1993, p. 771) yields an
expected utility gain of about .072 versus about .034 as provided
by search strategy C. This amounts, respectively, to a relative
increase of about 12% versus about 6% of the initially expected
utility EU(H|f � g � a), which is about .59, corresponding to
P(¬h|f � g � a).

To sum up, the pattern of responses usually obtained in standard
pseudodiagnosticity tasks with equal priors precisely matches re-
sults from the rational analysis of those very tasks.

Standard Version With Unequal Priors

According to the common reading of the pseudodiagnosticity
paradigm, row information search is the only worthwhile option no
matter what. As shown above, such a conclusion is unfounded.
Yet, to the best of our knowledge, it has never been challenged in
published work. Quite the contrary, it has been taken as a suitable
and reliable basis to devise experimental scenarios and to analyze,
report, and interpret the data obtained. One unfortunate outcome is
that several contributions from the literature simply fail to provide
sufficient information for appropriate assessment of optimal be-
havior.

Inquiries with standard pseudodiagnosticity problems with un-
equal priors are a case in point. Wolf et al. (1985), for instance,
employed three different clinical scenarios instantiating the stan-
dard pseudodiagnosticity task with anchor values ranging from .15
to .66 and priors ranging from .50 to .67. Importantly, the current
analysis implies that optimal choices were different across the
three cases, depending on different values of parameter 	a (see
below). However, Wolf et al. reported their results in an aggre-
gated fashion by which no conclusion can be drawn concerning
response frequencies in each of their problems; thus no sound
normative diagnosis of observed behavior is possible.

In a subsequent study, Wolf et al. (1988) did report some
disaggregated choice frequencies from early resident physicians
facing the same three problems as in the 1985 experiment. For
Case 1 (	 � .50, a � .66, thus 	a � .57), suboptimal choices R
were 43%—�EU(H, R|f � g � a) � �EU(H, D|f � g � a) � .050
versus �EU(H, C|f � g � a) � .082—but the exact frequency of C
choices (optimal) was not reported. An anomalous pattern of
results was obtained in Case 2 (	 � .50, a � .58, thus 	a � .54).
Here, slightly suboptimal R choices—�EU(H, R|f � g � a) �
�EU(H, D|f � g � a) � .082 versus �EU(H, C|f � g � a) �
.099—were unusually common (58%) for an anchor that was high
(although only slightly so). Anyway, the exact frequency of C
choices (optimal) was not reported for this problem either. Inter-
estingly, optimal responses were prevalent in the presence of the

manipulation of priors in Case 3 (	 � .67, a � .15, thus 	a � .38).
Optimal choice R was selected by a majority (62%), to which the
frequency of equally optimal D choices should be added—�EU(H,
R|f � g � a) � �EU(H, D|f � g � a) � .056 versus �EU(H, C|f �

g � a) � .010—but the latter is again not reported in the article.
Gruppen, Wolf, and Billi (1991) also employed unequal priors

in two out of three problems in their Experiment 2. It should be
noticed that for half the participants in this study, all table values
were in view from the beginning (full-information condition); only
the other half were given a proper pseudodiagnosticity search task,
with only one anchor value being provided (partial-information
condition). In any event, the anchor values employed, as well as
disaggregated choice frequencies, were not reported in the article.
Once again, this is presumably due to endorsement of the usual
analysis of the task, on the basis of which such information would
be irrelevant for the interpretation of results.

In conclusion, only one sufficiently detailed report has been
detected in the literature of a standard pseudodiagnosticity task
with unequal priors (i.e., Case 3 in Wolf et al., 1988), with no
departure from rational behavior being documented in partici-
pants’ responses.

Nonstandard Versions

Feeney et al. (2000; 2008, Exp. 2) employed interesting non-
standard variants of the pseudodiagnosticity task. To grasp the
nature of the problems presented to participants, one can usefully
rely on Feeney et al.’s (2008) own illustrative example (p. 214).
Participants are asked to imagine a friend of theirs having recently
bought a new house. It is on either street A (hypothesis h) or street
B (hypothesis ¬h), they are told, but they just can’t remember
which one. They do have, however, two data at their disposal: The
house has a swimming pool (datum f; a garden, in a different
condition) and a garage (datum g). They also know that 70% of
houses on street A have a swimming pool (in our notation, thus,
a � .70). The usual search task is then assigned.

The intended manipulation carried out in these experiments is
on the judged rarity of datum f (the house having a swimming pool
vs. a garden), thus on the expectation of a relatively low versus
high value in the row cell on the basis of the participants’ back-
ground knowledge. We would like to argue, however, that once
these kinds of pseudodiagnosticity problems are devised, in which
resort to background knowledge is relevant and encouraged, a
number of additional factors become involved that have not been
fully appreciated. As a consequence, crucial elements for rational
analysis of the problems employed and assessment of participants’
performance end up being left unspecified. Also, participants turn
out to have been presented with problems whose solution is
daunting for highly sophisticated analysts, let alone for naive
reasoners.

The above claims are supported by the following remarks. To
begin with, the rare versus common feature manipulation along
with the use of real-life contents produces departures from the
uniformity assumption, as suggested by Feeney et al.’s (2008)
manipulation check. For instance, in the “common” condition from
their Experiment 2, Feeney et al. identified average expected row
values as varying from .49 to up to .92 across four problem
contents, with average expected column/diagonal values concur-
rently ranging between .56 and .84. To model rational behavior,

979THEORETICAL NOTE



one would then have to posit nonuniform distributions for xr, xc

and xd matching average expectations from the participants.1 For
example, to model a mild rarity assumption about the row cell,
corresponding to an expected value of, say, 1⁄3, one might replace a
uniform distribution by a suitable beta distribution with parameters
� � 2, B � 4, that is, posit the following probability density function:

p(xr) �
xr�1 � xr�

3

�
0

1

u�1 � u�3du

.

Along this line, solution of Equations 10–12 would become con-
siderably harder, yet still viable. Notice, however, that such analyses
should be carried out separately for each problem employed and
separately compared with corresponding observed behavior.
This is already at odds with catch-all diagnoses of rationality/
irrationality based on the usual reading of pseudodiagnosticity.

To these complications should be added the need to relax all
independence assumptions. In the above house example, in fact,
having a swimming pool and having a garage will tend to be
perceived as positively associated among houses from any street
considered, so that the given data f and g are not independent
conditional on either h or ¬h (in violation of the data conditional
independence assumption). Also, coming to know that, say, 70%
of houses on either street A or B have a swimming pool (i.e., the
anchor or row value, respectively) would probably affect expec-
tations of the proportion of houses on the same street having a
garage (i.e., the column or diagonal value, respectively), for streets
with more houses having a swimming pool will tend to be such
that more houses presumably have a garage, so that cell values are
not independent (in violation of the likelihood independence as-
sumption). The latter remark is consistent with a further manipu-
lation check reported by Feeney et al. (2008) for their Experiment
1 (see p. 216, Table 1, columns C and F). However, as no
well-defined assumptions appear in these studies concerning the
kinds of dependencies at work in each scenario, no rational anal-
ysis of the tasks can be safely pursued. Also, were such assump-
tions provided, the solution of the relevant equations (i.e., 10–12
above) would now become a remarkably complex exercise. The
concern legitimately arises, then, as to what extent such challeng-
ing problems, intriguing as they can be, are effective in investi-
gating people’s naive reasoning abilities in a controlled fashion.

Other Studies of Information Search Behavior

Before presenting some conclusions based on our results con-
cerning the pseudodiagnosticity task, we will briefly extend the
discussion to other related studies.

A major source of relevant considerations for information
search behavior arises from the extensive and diverse inquiry on
Wason’s selection task (Wason, 1966, 1968), which is still foster-
ing a lively debate. For a long time thought to elicit a basic form
of confirmation bias and irrational behavior (see, e.g., Manktelow
& Over, 1993; Stein, 1996; Stich, 1990), the task has been rean-
alyzed through a sophisticated (Bayesian) account of information
search akin to the one employed here, by which participants’
responses have been said to be not only vindicated but also
actually explained as arising from cognitive processes reflecting

rational data selection (Oaksford & Chater, 1994; also see Fitelson,
in press, and Nickerson, 1996). The adequacy of such an expla-
nation has not remained unchallenged, however—one relevant
objection being precisely that, unlike the present treatment, it does
model participants as departing from received instructions (see
Evans & Over, 1996a; Laming, 1996; Oaksford & Chater, 1996,
1998, 2003; and Oberauer, Wilhelm, & Rosas Diaz, 1999, for
major contributions to this debate; also see Nelson, 2005, an
important review of the issue of information search in the study of
human cognition, including a host of further relevant references).

The case of Wason’s selection task illustrates to what extent con-
cerns about the theoretical framework may affect understanding of
empirical results. An additional example is more closely related to the
pseudodiagnosticity literature. Covey and Lovie (1998) devised so-
phisticated computerized stimuli involving 2 � 2 arrays similar to
pseudodiagnosticity scenarios and reported main effects of layout
(i.e., of hypotheses being displayed in columns vs. rows) and of
question wording (i.e., of the evaluation of only h vs. both h and ¬h
being asked for). However, Covey and Lovie’s study did not have an
information search task comparable to that in pseudodiagnosticity
experiments, for participants in this study could (and all eventually
did) uncover all cells. The dependent variables relevant for informa-
tion search concerned only the cell sequence followed and the time
spent in looking at each disclosed cell. As interesting as they are in
their own terms, such measurements clearly do not provide a test for
optimal information selection, as any pattern followed eventually led
to the same (complete) information available for subsequent judg-
ment. Briefly put, participants were not forced to choose which
piece(s) of information to collect within a set of alternatives; they
could only arrive at the same evidence by different routes.

Beyth-Maron and Fischhoff (1983) investigated people’s infor-
mation search behavior with variants of the following procedure.
At issue was the profession of a person on the background infor-
mation that s/he was present at a party (b) including only univer-
sity professors (h) and business executives (¬h), given the addi-
tional evidence that s/he is a member of the Bear’s Club (e).
Participants were asked to classify the following as relevant/
irrelevant: (a) the percentage of people at the party who are
university professors, that is, P(h|b); (b) the percentage of the
Bear’s Club members who are at the party, that is, P(b|e); (c) the
percentage of university professors at the party who are members
of the Bear’s Club, that is, P(e|h � b); and (d) the percentage of
business executives at the party who are members of the Bear’s
Club, that is, P(e|¬h � b). The items that are actually relevant,
from a Bayesian perspective, are (a), (b), and (d). Observed fre-
quencies of relevant responses were high for items (a) and (b)
(consistently above 70%) but ranged from 34.5% to 78% for item
(d) upon various manipulations, indicating that participants did not
always conform to Bayesian principles in this judgment task, as
contrasted to choice tasks such as in pseudodiagnosticity, Wason,
or Vuma planet experiments (see below).

In another study, Baron, Beattie, and Hershey (1988) suggested that
human reasoners actually depart from Baron’s (1985) epistemic utility
model in some cases in which this seems to be a normatively appro-

1 In essence, this would amount to an extension of the utility-based frame-
work outlined by Feeney, Evans, and Clibbens (1997) with reference to a class
of simplified scenarios akin to nonstandard pseudodiagnosticity tasks.
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priate benchmark. The most direct evidence of biased judgment seems
to arise from the fictitious medical scenario in their Experiment 4. It
included a number of diagnostic tests that were probabilistically
informative, yet unable to switch subsequent hypothesis choice and
treatment decisions, hence providing no epistemic utility gain. Such
tests were nevertheless rated as moderately useful by participants, thus
indicating information bias. However, participants also assigned con-
sistently higher ratings to diagnostic tests that were both informative
and discriminating for subsequent hypothesis choice (i.e., associated
to a positive epistemic utility gain).

Finally, findings by Skov and Sherman (1986) suggest interest-
ing rational tendencies in people’s information search behavior.
Participants were presented with two equally likely hypotheses h
and ¬h corresponding to two species of inhabitants of the fictitious
planet Vuma, i.e., Gloms and Fizos. They were also given the
probability of occurrence of a number of traits (e.g., the creature
drinks gasoline) under each hypothesis. The task was to indicate
which traits they would ask about to determine whether a novel
creature was a Glom or a Fizo. The experimental results revealed
that a major determinant of participants’ preference for a question
concerning a given trait e was the absolute value of the likelihood
difference P(e|h) – P(e|¬h). Notably, given the experimental con-
ditions, relying on this quantity in order to assess the usefulness of
a question turns out to be perfectly optimal in terms of expected
utility gain (as shown by Nelson, 2005, p. 983).

To sum up, a review of the literature apart from the pseudodi-
agnosticity paradigm shows that humans’ intuitive information
search strategies have been sparsely investigated and rather mixed
implications have been drawn. On reflection, however, the results
obtained seem to leave the normative adequacy of people’s behav-
ior as a largely open issue in many respects.

Conclusion

In the standard pseudodiagnosticity paradigm as described
above, a Bayesian truth-seeking attitude as well as the priors, data
independence, uniformity, and likelihood independence assump-
tions naturally apply. Thus, on the basis of the foregoing analysis,
the participants’ prevailing responses, far from showing irrational-
ity, have been typically optimal as documented so far. In particu-
lar, the main tendency in standard experimental scenarios with
equal priors has been to pursue search strategy C with high anchor
values and search strategy R when the anchor value was low—a
pattern of responses that precisely matches that of a utility-
maximizing, rational agent in the experimental conditions con-
cerned. As a consequence, the diagnosis of the allegedly wide-
spread cognitive bias commonly labeled pseudodiagnosticity lacks
sound empirical support in observed behavior.

It should be stressed that this conclusion does not rest in any
way on postulating divergences between experimenter and partic-
ipants in terms of their understanding of the problem structure, the
task, or the information provided. Quite the contrary, our claim has
been that the assumptions employed for the standard pseudodiag-
nosticity task are in line with the experimenter’s intentions. To this
extent, our criticism does not amount in any way to a defense of
human rationality on the basis of subtleties of the pragmatics of
experiments in human cognition.

Our target has been solely the allegedly normative reading that the
task has been given. Such a reading crucially rests on the flawed

assumption that in the pseudodiagnosticity paradigm the likelihood
value r is the only information that will allow normatively appropriate
computations. However, the well-grounded alternative analysis above
reveals that it was simply not the case that participants “actively chose
irrelevant information and ignored relevant information which was
equally easily available” (Doherty et al., 1979, p. 119). This is why the
charge that human reasoners do not have a working understanding of
diagnosticity (Doherty et al., 1979, p. 112) or fundamentally misun-
derstand this basic concept (Klayman, 1995, p. 397) is unsupported by
the experimental data available.

Let us state in the clearest way that, as we see the issue, such data
do not warrant the opposite conclusion either. In our view, then,
people’s formally optimal choices in this task do not prove them being
rational information search agents overall. Also, the normative ap-
proach employed here clearly postulates a highly idealized reasoner.
We do not mean to have shown that our analysis should be taken as
a psychologically realistic representation of human cognitive pro-
cesses in the pseudodiagnosticity paradigm, let alone in other settings.
Thus, our results do not dispel the possibility that most participants
handle the task by relying on some cognitively inexpensive heuristic
strategy, such as simply looking for information concerning the hy-
pothesis that is presently more likely (see Evans’s, 2007, discussion of
fundamental analytical bias in this respect). Our results do prove,
however, that such postulated heuristics, if present, have yielded
outcomes that largely match the normatively justified solutions of
standard pseudodiagnosticity problems, thus producing no systemat-
ically biased, suboptimal, or otherwise irrational behavior.

More generally, we urge that the usual normative reading of the
pseudodiagnosticity task demonstrably provides a deceivingly
simple picture of the problem. Accordingly, uncritical adoption of
such a reading has been shown to have negatively affected empir-
ical inquiry in terms of experimental design, methods, results
reporting, and interpretation. To this extent, we also see the current
contribution as illustrating a case study in the relevance of appro-
priate normative references in psychological research on human
reasoning and behavior.

In conclusion, the present work is not meant to directly address
the issue of human rationality in its generality. The intended
upshot is more limited but, in our view, more stringent. It can be
summarized as follows: Investigating people’s ability and limita-
tions in assessing the diagnosticity of information is certainly of
primary interest for the study of reasoning and cognition. How-
ever, experimental procedures will have to be devised and under-
stood on the basis of a careful consideration of the nature of
information search problems. In our opinion, a thorough rational
analysis such as the one presented here may thus be of value for
future empirical studies that are much needed. On close inspection,
in fact, the evidence obtained from the standard pseudodiagnos-
ticity task, commonly taken for 30 years as establishing the exis-
tence of a cognitive bias, has failed to discriminate between
normative and nonnormative models of information search behav-
ior. As such, one might well say that the evidence concerned turns
out to have been nondiagnostic in that respect.
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Appendix A

Derivation of Equations 7a and 7b and Related Calculations

To compute P(h|f � g � a), let us first notice that2

P�h|f � g � a� �
P�h � f � g � a�

P�f � g � a�

�
P�h � f � g � a�

P�h � f � g � a� � P�¬h � f � g � a�
.

Now,

P�h � f � g � a�

� �
0

1�
0

1�
0

1

P�h � f � g � a � xr � xc � xd�dxr dxc dxd

� �
0

1�
0

1�
0

1

P�f � g|h � a � xr � xc � xd�

� P�h|a � xr � xc � xd�p�a � xr � xc � xd�dxr dxc dxd.

By the priors, data independence, and likelihood independence
assumptions,

P�h � f � g � a� � �
0

1�
0

1�
0

1

axcP�h�p�a�p�xr�p�xc� p�xd�dxr dxc dxd

� a � p�a�P�h��
0

1

xcp�xc�dxc � axc p�a�P�h�.

(Variable names with an upperscore denote their respective mean
value.)

By a similar computation,

P�¬h � f � g � a� � x�rx�dp�a�P�¬h�.

Thus,

P�h|f � g � a� �
axcp�a�P�h�

axc p�a�P�h� � xrxdp�a�P�¬h�

�
axcP�h�

axcP�h� � xrxdP�¬h�
.

Finally, by the uniformity assumption, Equation 7a follows with
P(h) � 	:

P�h|f � g � a� �
a	

a	 � 1⁄2�1 � 	�
,

from which, by the probability calculus, one immediately has
Equation 7b:

P�¬h|f � g � a� �
1⁄2�1 � 	�

a	 � 1⁄2�1 � 	�
.

Similar calculations yield the following results:

P(h|f � g � a � r) �
a	

a	 � r�1 � 	�
�

1⁄2	a

1⁄2	a � r�1 � 	a�
,

P(h|f � g � a � c) �
ac	

ac	 � 1⁄4�1 � 	�
�

c	a

c	a � 1⁄2�1 � 	a�
,

and

P(h|f � g � a � d) �
a	

a	 � d�1 � 	�
�

1⁄2	a

1⁄2	a � d�1 � 	a�
,

where 	a � P(h|f � g � a).

Appendix B

Derivation of Equations 15–17

Let us first recall Equation 14:

EUR�H|f � g � a)

��
0

1

max�P�h|f � g � a � xr�, P�¬h|f � g � a � xr�

� P�xr|f � g � a�dxr

� �
0

1

max�P�h � xr|f � g � a�, P�¬h � xr|f � g � a�dxr.

2 Throughout the appendixes, it is assumed that (a) either a � 0 or r �
0 and (b) either c � 0 or d � 0. Although inconsequential for all
quantitative results presented, such assumptions are required to ensure
mathematical coherence.

(Appendixes continue)
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It can then be shown that, by the priors, data independence,
uniformity, and likelihood independence assumptions,

P�h � xr|f � g � a� � P�h|f � g � a� � 	a

and

P�¬h � xr|f � g � a� � 2xr P�¬h|f � g � a� � 2xr�1 � 	a�.

Thus,

EUR�H|f � g � a) ��
0

1

max�	a,2xr�1 � 	a�dxr.

Parallel derivations yield

EUC�H|f � g � a� � �
0

1

max�2	a xc,�1 � 	a�dxc

and

EUD�H|f � g � a� � �
0

1

max�	a, 2xd�1 � 	a�dxd.

Now consider EUR(H|f � g � a). Notice that

	a � 2xr�1 � 	a� iff xr � 1⁄2
	a

�1 � 	a�
.

If 	a � 2⁄3, the latter inequality holds for any possible value of xr

(since xr � 1). Thus,

for 2⁄3 � 	a � 1, EUR�H|f � g � a� � �
0

1

	a dxr � 	a.

On the other hand,

for 0 � 	a � 2⁄3, EUR�H|f � g � a�

� �
0

1⁄2
	a

�1
	a�
	a dxr � �

1⁄2
	a

�1
	a�

1

2�1 � 	a�xrdxr

� 	a�
0

1⁄2
	a

�1
	a�
dxr � 2�1 � 	a��

1⁄2
	a

�1
	a�

1

xrdxr

� 	a� 1⁄2
	a

�1 � 	a�
� � �1 � 	a�� 1 � � 1⁄2

	a

�1 � 	a�
� 2� .

The following equalities are then obtained by algebraic manipu-
lations:

For 0 � 	a � 1⁄2, �EU�H, R|f � g � a�

� 	a� 1⁄2
	a

�1 � 	a�
� � �1 � 	a�� 1 � � 1⁄2

	a

�1 � 	a�
� 2�

� �1 � 	a� �
	a

2

4�1 � 	a�
.

For 1⁄2 � 	a � 2⁄3, �EU�H, R|f � g � a�

� 	a� 1⁄2
	a

�1 � 	a�
� � �1 � 	a�� 1 � � 1⁄2

	a

�1 � 	a�
� 2� � 	a

�
�2 � 3	a�

2

4�1 � 	a�
.

For 2⁄3 � 	a � 1, �EU�H, R|f � g � a� � 	a � 	a � 0.

This concludes the derivation of Equation 15. Calculations con-
cerning EUD(H|f � g � a) and Equation 17 are identical. It remains
to compute EUC(H|f � g � a). Notice that

2	a xc � �1 � 	a� iff xc � 1⁄2
�1 � 	a�

	a
.

If 	a � 1⁄3, the latter inequality holds for any possible value of xc

(since xc � 1). Thus,

for 0 � 	a � 1⁄3, EUC�H|f � g � a�

� �
0

1

�1 � 	a�dxc � �1 � 	a�.

On the other hand,

for 1⁄3 � 	a � 1, EUC�H|f � g � a�

� �
0

1⁄2�1
	a�

	a
�1 � 	a�dxc � �

1⁄2�1
	a�

	a

1

2	axcdxc

� �1 � 	a��
0

1⁄2�1
	a�

	a
dxc � 2	a�

1⁄2�1
	a�

	a

1

xcdxc

� �1 � 	a�� 1⁄2
�1 � 	a�

	a
� � 	a� 1 � � 1⁄2

�1 � 	a�

	a
� 2� .

The following equalities are then obtained by algebraic manipu-
lations:

For 0 � 	a � 1⁄3, �EU�H, C|f � g � a�

� �1 � 	a� � �1 � 	a� � 0.

For 1⁄3 � 	a � 1⁄2, �EU�H, C|f � g � a�

� �1 � 	a�� 1⁄2
�1 � 	a�

	a
� � 	a� 1 � � 1⁄2

�1 � 	a�

	a
� 2�

� �1 � 	a� �
�3	a � 1�2

4	a
.

For 1⁄2 � 	a � 1, �EU�H, C|f � g � a�

� �1 � 	a�� 1⁄2
�1 � 	a�

	a
� � 	a� 1 � � 1⁄2

�1 � 	a�

	a
� 2� � 	a

�
�1 � 	a�

2

4	a
.

This concludes the derivation of Equation 16.
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Appendix C

Proof of the Theorem

Theorem: In standard pseudodiagnosticity tasks (i.e., under the
priors, data independence, uniformity, and likelihood indepen-
dence assumptions),

for 	a � 0, 1⁄2, 1, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);

for 0 � 	a � 1⁄2, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a);
and

for 1⁄2 � 	a � 1, �EU(H, C|f � g � a)

� �EU(H, R|f � g � a) � �EU(H, D|f � g � a).

Proof: First, posit �EU(H, C|f � g � a) � �EU(H, R|f � g � a)
for 0 � 	a � 1⁄3, that is,

0 �
	a

2

4�1 � 	a�
.

	a � 0 is the only solution, whereas the right side �EU(H, R|f �

g � a) is clearly higher for any other value in the interval consid-
ered.

Then posit �EU(H, C|f � g � a) � �EU(H, R|f � g � a) for 1⁄3
� 	a � 1⁄2, that is,

�3	a � 1�2

4	a
�

	a
2

4�1 � 	a�
.

Algebraic manipulations yield

�	a � 1⁄2��10�	a � 1⁄2�2 � 1⁄2� � 0,

which has no solution in the interval considered. If two continuous
functions do not intersect in a given interval, then one must be
higher in the whole interval. Then, as �EU(H, C|f � g � a) �
�EU(H, R|f � g � a) in 0 � 	a � 1⁄3, this extends to 0 � 	a � 1⁄2,
for both functions are continuous and no point of intersection
exists.

Now posit �EU(H, C|f � g � a) � �EU(H, R|f � g � a) for 2⁄3
� 	a � 1, that is,

�1 � 	a�
2

4	a
� 0.

	a � 1 is the only solution, whereas the left side �EU(H, C|f � g �

a) is clearly higher for any other value in the interval considered.
Finally, posit �EU(H, C|f � g � a) � �EU(H, R|f � g � a) for

1⁄2 � 	a � 2⁄3, that is,

�2 � 3	a�
2

4�1 � 	a�
�

�1 � 	a�
2

4	a
.

Algebraic manipulations once again yield

�	a � 1⁄2��10�	a � 1⁄2�2 � 1⁄2� � 0

with 	a � 1⁄2 as the only solution in the interval considered. As
�EU(H, C|f � g � a) � �EU(H, R|f � g � a) in 2⁄3 � 	a � 1, this
extends to 1⁄2 � 	a � 1, for both functions are continuous and no
point of intersection exists. This completes the proof of the theo-
rem.
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