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a b s t r a c t

This paper considers a family of inductive problems where reasoners must identify familiar categories or
features on the basis of limited information. Problems of this kind are encountered, for example, when
word learners acquire novel labels for pre-existing concepts. We develop a probabilistic model of iden-
tification and evaluate it in three experiments. Our first two experiments explore problems where a sin-
gle category or feature must be identified, and our third experiment explores cases where participants
must combine several pieces of information in order to simultaneously identify a category and a feature.
Humans readily solve all of these problems, and we show that our model accounts for human inferences
better than several alternative approaches.

� 2010 Elsevier B.V. All rights reserved.
Suppose that you are watching a German nature program and the word ‘‘cat” may be a matter of attaching a new label to this pre-

that you pick up enough of the narrative to learn that a Schmetterling
is colorful, has wings, and has antennae. Can you guess what a
Schmetterling might be? Similarly, suppose that you learn that zebras
and tigers are both gestreifet. Can you guess what gestreifet might
mean? We will refer to both of these problems as identification prob-
lems. In the first case, you need to identify a category – namely,
butterfly. In the second case, you need to identify a feature – namely,
striped. Problems like these draw on semantic knowledge about
animals and their features, and this paper will consider how this
knowledge can be used to address identification problems.

As our opening examples suggest, category identification and
feature identification are problems regularly faced by second-lan-
guage learners. In many cases these learners will already have con-
cepts like butterfly and striped, and their task is to map novel labels
onto these concepts. Identification, however, may play an equally
critical role in first-language acquisition. Before learning her first
few words, a child may already have formed a category that in-
cludes creatures like the furry pet kept by her parents, and learning
ll rights reserved.
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existing category (Chomsky, 1991; Fodor, 1975; Mervis, 1987).
Bloom (2000) summarizes this proposal by suggesting that ‘‘much
of what goes on in word learning is establishing a correspondence
between the symbols of a natural language and concepts that exist
prior to, and independently of the acquisition of that language” (p.
242).

This paper develops a probabilistic framework that can address
a broad family of identification problems. Like all inductive prob-
lems, identification problems can only be solved if a learner relies
on background knowledge, and our approach offers a formal char-
acterization of the knowledge that guides category and feature
identification. We propose that this knowledge is stored in a
semantic repository that includes information about the relation-
ship between categories and features (for instance, butterflies have
wings) along with information about the frequency with which dif-
ferent categories and features are encountered (a random speaker
is more likely to refer to dogs or cats than to chameleons or lla-
mas). We make these ideas concrete by describing a repository
built from the Leuven Natural Concept Database (De Deyne et al.,
2008).

Prior knowledge plays a critical role in inductive reasoning, but
this knowledge must be combined with evidence in order to solve
inductive problems. Often multiple pieces of evidence are available,
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and a reasoner must integrate all of this information. Several ac-
counts of information integration can be found in the psychological
literature (Anderson, 1981), and different approaches combine mul-
tiple pieces of evidence by adding (Lombardi & Sartori, 2007), multi-
plying (Medin & Schaffer, 1978; Oden & Massaro, 1978) or taking the
maximum (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990) of a set of
numerical scores. We will argue that probabilistic inference pro-
vides a principled account of information integration that avoids
arbitrary choices of functions like sums and products.

The inductive problems we consider and the modeling ap-
proach we pursue both build on previous contributions to the psy-
chological literature. The problem of identification is related to the
work of Lombardi and Sartori (2007) (see also Sartori & Lombardi,
2004) who developed a computational account of category identi-
fication that is known as the additive relevance model. These
authors report that their model performs better than a simple
Bayesian alternative, but their analysis was based on sparse feature
matrices that may not adequately capture what people actually
know about categories and their features. Our results suggest that
a Bayesian account of category identification performs better than
the additive relevance approach when both are supplied with a
semantic repository that better captures the knowledge that peo-
ple bring to the problem.

Several psychologists have developed probabilistic models of
inductive reasoning (Anderson, 1990; Heit, 1998; Shepard, 1987)
and our approach continues within this general tradition. Of the
many probabilistic models that have been developed, our approach
is related most closely to models of categorization (Anderson,
1991) and generalization (Kemp & Tenenbaum, 2009) that attempt
to explain how inferences about novel objects and properties are
guided by semantic knowledge. The identification problems we
consider are somewhat different, but our approach is consistent
with the idea that probabilistic inference is a domain-general prin-
ciple that helps to explain how humans solve many inductive prob-
lems. Although we focus throughout on identification, we return to
the relationship between identification and other inductive prob-
lems in the general discussion.

1. A probabilistic account of category and feature identification

This paper will focus on the three identification problems in
Table 1. Each problem consists of a list of statements about animal
categories and their features, and each list includes a hidden
category C, a hidden feature F or a hidden category and a hidden
feature. In each case the task of the reasoner is to identify the hid-
den items. Although the problems in Table 1 are simple enough to
be experimentally tractable, they are inspired in part by the real-
world inductive challenge faced by first- and second-language
learners. In real-world identification problems, the hidden
category or feature will typically be introduced as an unfamiliar
component of a linguistic utterance (e.g. Punda milia have stripes),
and the task of the learner is to identify the meaning of this novel
word or phrase.

This paper will develop a unified probabilistic model that
addresses all three of the problems in Table 1. For each of these
Table 1
Three identification problems. Each problem asks a reasoner to identify a category C, a
feature F, or a category and a feature.

Problem Form Example Example
response

Category identification Cs have ff1; . . . ; f ng Cs have stripes C = zebra
Feature identification fc1; . . . ; cmg have F Rabbits have F F = long ears
Joint identification fc1; . . . ; cmg have F Rabbits have F F = fur

Cs have F Cs have F C = tiger
Cs have ff1; . . . ; f ng Cs have stripes
problems, our model specifies a probability distribution over the
values of the hidden items given the items that have been ob-
served. We propose that humans choose categories and features
that have high probability according to these distributions.

To formally specify these distributions we take a generative
approach. More precisely, we specify a probabilistic procedure
for generating identification problems like the examples in Table 1.
Suppose that we start with a semantic repository that captures
knowledge about animal categories and their features. We will
specify a procedure that samples a list of statements from this
repository, including, for example, the statement that ‘‘zebras have
stripes”. We now assume that some of the categories and features
in the sampled statements are hidden – for example, ‘‘zebras have
stripes” might become ‘‘Cs have stripes”. Given this procedure for
generating identification problems, we can now use Bayesian infer-
ence to work backwards and identify the hidden items in any given
problem.

The semantic repository plays a critical role in this approach and
must specify two kinds of distributions. First, it must specify a prior
distribution pðcÞ over categories and a prior distribution pðf Þ over
features. These distributions can capture factors like the familiarity
of a category and the frequency with which a feature is thought
about. For example, in most contexts a familiar category like dog
should receive higher prior probability than a category like chame-
leon. The semantic repository must also provide two additional dis-
tributions: pðf jcÞ which specifies the probability that a person will
choose f when asked to list a feature of category c, and pðcjf Þwhich
specifies the probability that a person will chose c when asked to
list an animal category that has feature f. For example,
pðbarksjdogÞ should be greater than pðbreathes airjdogÞ, since barks
is the more characteristic feature of dogs, and pðbreathes airjdogÞ
should be greater than pðhas wingsjdogÞ, since dogs breathe air
but do not have wings. Similarly, pðrobinjhas wingsÞ should be
greater than pðpenguinjhas wingsÞ, which in turn should be greater
than pðdogjhas wingsÞ.

The four distributions pðcÞ, pðf Þ, pðcjf Þ and pðf jcÞ can be used to
generate many kinds of identification problems. Here we focus on
three problems that we refer to as category identification, feature
identification, and joint category and feature identification.

1.1. Category identification

The first problem in Table 1 requires a reasoner to identify an
animal category given one or more features of the category. For
example, the reasoner might be informed that ‘‘Cs have stripes
and hooves” and asked to identify Category C. As shown in
Fig. 1a, we assume that problems of this kind are generated by
sampling a category c (here c ¼ zebra) from the prior distribution
pðcÞ, then sampling n features from the distribution pðf jcÞ. As a fi-
nal step, the value of c is hidden and the reasoner is asked to iden-
tify this category.

We model this inference using the posterior distribution
pðcjf1; . . . ; f nÞ, or the distribution over categories given the features
that have been observed. This distribution can be written as

p cjf1; . . . ; f nð Þ / p f1; . . . ; f njcð Þp cð Þ ð1Þ

¼
Yn

j¼1

p fjjc
� �

p cð Þ; ð2Þ

where the right hand side is expressed using distributions specified
by the semantic repository (pðf jcÞ and pðcÞ). Eq. (2) combines two
criteria: the hidden category should have high prior probability
(pðcÞ should be high), and should also be consistent with the ob-
served features ðpðfjjcÞ should be high for each observed feature j).
Note that Eq. (2) follows from Eq. (1) only if the features f1 through
fn are conditionally independent given the hidden category c. We



(a)  Category identification (b)  Feature identification (c)  Joint category and feature identification

(ii)(i)

Fig. 1. Generative approaches to the three identification problems in Table 1. Shaded nodes indicate variables that are observed, and unshaded nodes indicate variables with
values that must be inferred. (a) Category identification. The observed features are assumed to be independently generated from the distribution pðf jcÞ. (b) Feature
identification. The observed animal categories are generated from the distribution pðcjf Þ. (c) Joint category and feature identification. This paper evaluates the approach in (ii),
which assumes that the hidden feature is generated before the hidden category.
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make this independence assumption for simplicity, but for some
applications it may need to be relaxed.

Eq. (2) is strongly reminiscent of a categorization model that is
known as the ‘‘naive Bayes” approach and is discussed by psychol-
ogists (Anderson, 1991) and machine learning researchers
(Mitchell, 1997). This model, however, is typically used for object
categorization rather than identification – in the standard setting,
an object is observed with certain features (f1 through fn), and
the inference problem is to assign this object to a category.
Although there is a close relationship between the problems of ob-
ject categorization and category identification, we explain in the
general discussion why it is important to distinguish the two.

1.2. Feature identification

The second problem in Table 1 is similar to category identifica-
tion but now the reasoner is required to identify a feature given
one or more categories that have the feature. For example, the rea-
soner might be informed that ‘‘zebras and tigers have Feature F”
and asked to identify Feature F. We assume that questions of this
kind are generated by sampling a feature f from the prior distribu-
tion pðf Þ then sampling m categories from the distribution pðcjf Þ
(see Fig. 1b). Feature f is then hidden, but can be inferred by com-
puting the posterior distribution pðf jc1; . . . ; cmÞ, or the distribution
over features given the categories that have been observed:

p f jc1; . . . ; cmð Þ / p c1; . . . ; cmjfð Þp fð Þ ð3Þ

¼
Ym
i¼1

p cijfð Þp fð Þ; ð4Þ

where again we have made an assumption of conditional indepen-
dence. Intuitively, this distribution will favor features that have
high prior probability and that are consistent with the categories
observed.

1.3. Joint category and feature identification

Many different identification problems can be created by sam-
pling features and categories from the semantic repository then
hiding some of these items. Some of the most interesting cases in-
volve problems where multiple items must be identified and these
items are related both to each other and to other items that have
been observed. The joint identification problem in Table 1 is one
such case where a reasoner must simultaneously identify a cate-
gory and a feature. Suppose, for example, that rabbits have feature
F, that Cs have feature F, and that Cs have stripes. A reasoner may
combine all of this information and guess that feature F is fur and
that category C is tiger.

Problems of this kind can be generated according to the method
in Fig. 1c.ii. We first sample a feature f1 from the prior distribution
pðf Þ (here f1 ¼ fur). Next we sample m categories from the distribu-
tion pðcjf1Þ: here m ¼ 2, and the two categories are tiger and rabbit.
We then sample n� 1 features from the distribution pðf jc1Þ: here
n ¼ 2, and the additional feature sampled is stripes. We now create
an identification problem by concealing the identities of the first
feature (fur) and the first category (tiger). These items, however,
can be inferred using a distribution over the hidden category and
feature given everything else that has been observed:

p c1; f1jf2 . . . fn; c2 . . . cmð Þ
/ p f2; . . . ; f njc1ð Þp c2; . . . ; cmjf1ð Þp c1; f1ð Þ ð5Þ

¼
Yn

j¼2

p fjjc1
� �Ym

i¼2

p cijf1ð Þp c1jf1ð Þp f1ð Þ: ð6Þ

Note that a pair ðc1; f1Þwill only receive high posterior probabil-
ity according to Eq. (6) if c1 is consistent with all of the observed
features (f2 through fn), f1 is consistent with all of the observed cat-
egories (c2 through cm), and c1 is consistent with f1. As in Eqs. (2)
and (4) we have assumed that features f2 through fn are condition-
ally independent given c1, and that categories c2 through cm are
conditionally independent given f1.

Fig. 1c.i shows an alternative method for generating joint iden-
tification problems in which category c1 is sampled before feature
f1. These two approaches will be equivalent if the distributions
specified by the semantic repository satisfy

pðcjf Þpðf Þ ¼ pðf jcÞpðcÞ; ð7Þ

but this condition need not hold in general, and will not hold for the
distributions used in this paper. Although the two approaches in
Fig. 1c may lead to different inferences about the hidden category
and feature, here we evaluate the second approach. All of the joint
identification problems in our experiment follow the pattern in
Table 1 and mention the hidden feature before the hidden category.
The approach in Fig. 1c.ii seems appropriate for questions of this
form, since it assumes that the hidden feature is generated before
the hidden category.

1.4. The semantic repository

Eqs. (2), (4) and (6) specify a formal approach to identification
that relies on four distributions: pðcÞ, pðf Þ, pðcjf Þ, and pðf jcÞ. These
distributions capture the background knowledge that guides iden-
tification and are assumed to be specified by a semantic repository
that includes knowledge about categories and their features. For all
analyses in this paper we use a semantic repository based on the
Leuven Natural Concept Database (De Deyne et al., 2008). Note,
however, that this semantic repository represents just one way
to formalize the distributions required by our probabilistic frame-
work. Future studies can explore whether alternative repositories
allow our framework to account better for human inferences.

The repository considered here includes 113 animal categories
and 757 features. The full Leuven database includes 129 categories
and familiarity ratings for the entire set. We dropped the 16 least
familiar categories, and normalized the familiarity ratings for the
113 remaining categories to create the prior distribution pðcÞ re-
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Fig. 2. Our model relies on distributions pðcÞ, pðf Þ, pðf jcÞ and pðcjf Þ that are
provided by a semantic repository. The latter two distributions are defined by
normalizing the rows or columns of a semantic matrix like the example shown here.
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quired by our model. Of the 113 categories in the semantic repos-
itory, cat and dog are the two with highest prior probability, and
llama and python are the two with lowest prior probability.

The Leuven data include two components that specify relation-
ships between categories and features. The first is a listing matrix L
collected in an experiment where participants were asked to list
features for each category. Entry Lði; jÞ indicates the number of par-
ticipants who listed feature j for category i.1 The listing data specify
a set of features, and in a follow-up experiment four participants
provided binary acceptability judgments about all category-feature
pairs. We organized these responses into a truth matrix T where
Tði; jÞ ¼ 1 if any of the four participants indicated that category i
had feature j. For example, suppose that no participant spontane-
ously generated the feature breathes air when asked to list features
of hamsters, but that breathes air was generated for another category
such as dolphins. In the follow-up experiment, participants may
have indicated that hamsters breathe air when asked directly about
this category-feature pair. If so, then matrices L and T will show that
Lðhamster; breathes airÞ ¼ 0 but that Tðhamster; breathes airÞ ¼ 1.

We combined the listing matrix L and the truth matrix T to
define the conditional distributions pðcjf Þ and pðf jcÞ. Both distribu-
tions are defined in terms of a semantic matrix S ¼ Lþ T þ 0:001
(see Fig. 2). Combining L and T ensures that any true category-fea-
ture pair will have a semantic strength of at least 1, and that pairs
which are frequently generated in the listing task will have high
strengths. Adding a small constant (0.001) ensures that there is a
non-zero strength for any category-feature pair, which will be
useful when working with noisy experimental data. The distribu-
tions pðcjf Þ and pðf jcÞ can now be defined by normalizing the rows
and columns of semantic matrix S. If we normalize the rows we
produce a matrix where row i specifies the distribution pðf jciÞ. If
we normalize the columns we produce a matrix where column j
specifies the distribution pðcjfjÞ. In other words:

p fjjci
� �

¼ S i; jð ÞP
j0S i; j0
� �

p cijfj
� �

¼ S i; jð ÞP
i0S i0; j
� � :

ð8Þ

The distributions just defined can be given the following
probabilistic interpretation. Suppose that the frequencies in row i
of matrix L are generated from a multinomial distribution hi and
that the prior distribution on hi is a Dirichlet distribution with a
1 Although the Leuven database includes both animal and artifact categories, note
that the listing matrix L is currently available only for the animal categories. Our work
therefore focuses exclusively on the animal categories.
parameter vector equal to 0.001 plus the ith row of matrix T. In
other words, matrix T captures our initial expectations about
which features may be associated with category i, and the observa-
tions in L can be used to update these expectations. Given these
assumptions, normalizing the ith row of matrix S produces a distri-
bution pðf jciÞ that is equivalent to the maximum a posteriori esti-
mate of the distribution hi that generated the listing data for
category i. Our specification of pðcjfjÞ can be given a similar
interpretation.

The remaining distributions in the semantic repository specify
prior distributions pðcÞ over categories and pðf Þ over features. As
described already, our prior pðcÞ is based on the familiarity ratings
included in the Leuven database. We define the prior pðf Þ using
information in the listing matrix L:

p fj
� �
¼
P

iL i; jð ÞP
i;jL i; jð Þ : ð9Þ

Eq. (9) indicates that the probability of any feature is propor-
tional to the number of times it was generated in the feature-list-
ing experiment. The resulting prior captures the familiarity of a
feature, or the readiness with which it springs to mind. Of the
757 features in the semantic repository, is small, is a bird and is
an animal are the three with highest prior probability, and looks like
a snail, is difficult to remove from one’s body, and was used in medical
science in earlier times are three with very low prior probability.

The strategy used for collecting the Leuven data creates an
important asymmetry between categories and features. Matrix L
was constructed by asking participants to list features of a given
category, not by asking participants to list categories which had a
given feature. As a result, our method for estimating pðf jcÞ from
the Leuven data is more principled than our method for estimating
pðcjf Þ. Both methods could be placed on an equal footing by sup-
plementing the Leuven data with results from a ‘‘category-listing”
experiment in which participants are provided with a feature and
asked to list which categories have this feature. Here, however, we
use the available data – matrices L and T – to create a rough and
ready approximation of pðcjf Þ.

A second issue with the Leuven data is that there were slight
variations in the number of participants who completed the fea-
ture-listing task for each category. At least 20 participants gener-
ated features for each category, but the exact number for each
category cannot be accurately reconstructed. As a result, the distri-
butions pðcjf Þ and pðf Þ in Eqs. (9) and (8) may be somewhat
distorted. Note, however, that the total number of features gener-
ated for each category is approximately the same, indicating that
the variability in the number of participants per category could
not have been too large. We therefore believe that this variability
introduces some noise into the distributions pðcjf Þ and pðf Þ, but
does not fundamentally compromise the quality of our semantic
repository.

The distributions specified by our repository do not satisfy the
constraint in Eq. (7). As a result, our repository is not consistent
with a principle of ‘‘order invariance” which states that the distri-
bution on category-feature pairs ðc; f Þ is the same regardless of
whether the category or the feature is generated first. Given the
conditional distributions in Eq. (8), the principle of order invari-
ance is uniquely satisfied by choosing priors:

p cið Þ ¼
P

jS i; jð ÞP
i;jS i; jð Þ

p fj
� �
¼
P

iS i; jð ÞP
i;jS i; jð Þ :

ð10Þ

These priors, however, are not consistent with our intuitions
about the relative familiarity of different categories and features.
For example, the three categories with highest prior probability
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according to Eq. (10) are bee, owl, and lion, and neither cat nor dog
appears among the top 80 categories. This result may be explained
in part by the fact that different numbers of participants listed fea-
tures for different categories. Since the priors in Eq. (10) do not
make intuitive sense, we chose to abandon the principle of order
invariance. Future work can assess this principle in more detail,
and can examine whether people produce different distributions
over category-feature pairs depending on the order in which they
generate members of these pairs.

1.5. A relevance account of identification

We know of no alternative framework that will handle all three
problems in Table 1, but Lombardi and Sartori (2007) developed a
semantic relevance model of category identification and the same
approach can be applied to feature identification. Consider first the
problem of category identification. As before, we assume that a set
of features ff1; . . . ; f ng is observed, and that the task is to identify a
category that has these features. Roughly speaking, a feature is rele-
vant to a category if it is strongly associated with that category and
associated with few other categories. Formally, we transform a
semantic matrix S into a relevance matrix R with entries

Rði; jÞ ¼ Sði; jÞ log
m
mi

� �
;

where m is the total number of categories and mi is the number of
categories with non-zero associations to feature i. We set S ¼ Lþ T
where L and T are the listing and truth matrices derived from the
Leuven data, and smooth the resulting R matrix by adding 0:001
to each entry.

Matrix R specifies the relevance of each feature to each cate-
gory, but we need some way to combine these relevance scores
in cases where multiple features of the hidden category are pro-
vided. Lombardi and Sartori (2007) rely on a measure of setwise
relevance that captures the extent to which a set of features is
relevant to a category. Given such a measure, they propose that
people solve category identification problems by choosing the cat-
egory that is maximally relevant to the provided features under
this measure. At least two setwise measures can be considered:
the additive relevance model uses Rsetðff1; . . . ; f ng; ciÞ ¼

Pn
j¼1Rði; jÞ

and the multiplicative relevance model uses Rsetðff1; . . . ; f ng; ciÞ ¼Qn
j¼1Rði; jÞ. Lombardi and Sartori (2007) recommend the additive

approach, and suggest that an additive model outperforms a
multiplicative model on the problem that they consider. Here,
however, we evaluate both approaches.

A relevance model of feature identification can be defined sim-
ilarly. The main difference is that entry Rði; jÞ in the relevance ma-
trix R should now specify the relevance of category i to feature j
rather than the relevance of feature j to category i. As a result,
the strength matrix S is normalized differently to create the rele-
vance matrix:

Rði; jÞ ¼ Sði; jÞ log
n
nj

� �
;

where n is the total number of features and nj is the total number of
features with non-zero associations to category i. As before, we
smooth the relevance matrix by adding 0:001 to each entry, and
consider two strategies – additive and multiplicative – for combin-
ing relevance values.

2. Experiments 1 and 2: category and feature identification

We developed three experiments to explore the identification
problems in Table 1. Our first two experiments explore the two
simplest identification problems: category identification and fea-
ture identification. Category identification has been previously
studied (Lombardi & Sartori, 2007) but feature identification has
received little attention, and our first and most basic goal is to
explore whether people can solve both problems. A second goal
is to evaluate our Bayesian approach and to compare it with the
additive relevance approach. Lombardi and Sartori (2007) found
that the additive relevance model outperforms a Bayesian account
of category identification, but this result may depend in part on the
semantic repository that they used, and the resources included in
the Leuven database should allow a more accurate test of compet-
ing models than has previously been possible.

2.1. Experiment 1: category identification

Our first experiment required participants to identify a hidden
category given up to three features of this category.

2.1.1. Participants
20 adults participated for course credit.

2.1.2. Stimuli and procedure
Participants were asked to fill out a written questionnaire. The

instructions informed them that each question would list ‘‘be-
tween 1 and 3 features that describe a certain animal” and that
they should make ‘‘three guesses about what that animal might
be”. A demonstration question was included where the categories
were fruits rather than animals, and the features provided were
yellow and grows on trees. Several possible guesses were listed,
including lemon, banana, mango, and grapefruit.

The experiment included 50 questions: 20 listed three features,
20 listed two features, and 10 listed a single feature. A complete list
of questions is shown in Appendix A. Note that some of the trans-
lations included in the Leuven database were adjusted in order to
make the feature labels as idiomatic as possible. For example, has a
fur (in dutch: vacht) was replaced by has fur. Participants generated
a ranked list of three categories in response to each question, and
were asked to leave some of these slots blank if they could not
think of three categories for a given question. The order of the
questions was randomized across participants.

2.1.3. Results
The data were coded by manually identifying the category in

semantic matrix S that best matched each response. 29% of the re-
sponses were left uncoded because they did not correspond to any
category in the S matrix, and all subsequent analyses will consider
only the responses that were coded. Most of the coded responses
were cases where a participant provided the exact label for one
of the categories in the repository. A small number of cases, how-
ever, were less straightforward. The semantic repository includes
some subordinate categories (e.g. viper and cobra), but subordinate
categories that do not appear were coded using an appropriate ba-
sic-level category (e.g. taipan was coded as snake, and great white
shark was coded as shark). Any modifiers were dropped – for exam-
ple, baby kangaroo was coded as kangaroo, and furless cat as cat. A
small number of pairs were not included under any of the previous
criteria but were treated as equivalent – for example, puppy was
coded as dog, and pony as horse.

Responses to three questions are summarized in Fig. 3. In each
plot, the human curve shows an empirical probability distribution
where the probability of a category is proportional to the number
of times it was named in the experiment. Given, for example, that
Cs eat mice, are nocturnal and have four legs, the most common
response is that C = cat (Fig. 3c). Note that there are several good
responses to many questions in the experiment. In Fig. 3c, for
example, fox is a sensible guess given the information provided.

The remaining curves in Fig. 3 show the predictions of three
models: the Bayesian model, the additive relevance model, and
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Fig. 3. Responses to three of the category identification problems in Experiment 1. The curves for the Bayesian and multiplicative models are near identical in all three plots.
The first three numbers in the legend show the amount of probability mass assigned by each model to the eight items in each plot. The remaining numbers show the absolute
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Fig. 4. Model correlations for the individual questions in Experiments 1 and 2. For
each question we constructed an empirical distribution where the probability of an
item (a category or feature) is proportional to the number of times it was named in
the experiment. The x and y axes show correlations between these empirical
distributions and the predictions of the additive relevance and Bayesian models. In
each plot, the trio of white points shows the three questions that led to the greatest
difference in performance between the two models. Responses to these trios are
plotted in Figs. 3 and 6.
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the multiplicative relevance model. Each of these models orders the
113 categories in the S matrix in response to each question. The
Bayesian model generates a probability distribution
Pðcjff1; . . . ; f ngÞ over these categories, and the semantic relevance
models (additive and multiplicative) generate relevance scores
Rsetðff1; . . . ; f ng; cÞ for each category. For our purposes, we convert
the relevance scores to a pseudo-probability distribution by normal-
izing so that each set of scores sums to one.

The eight categories along the x-axis of each plot were chosen
by taking the top two choices according to each model and accord-
ing to our participants. If some of these choices overlapped leaving
fewer than eight distinct choices in total, we filled out the set by
including the next most common human responses. The additive
relevance model often assigns scores to the different categories
that differ very little in absolute magnitude. To ensure that the rel-
ative preferences of each model were visible, we normalized each
curve in Fig. 3 so that the scores sum to 1 across the eight items in
each plot. The legend indicates the total probability mass assigned
to the eight categories by each model. Fig. 3a shows, for instance,
that the eight categories plotted account for 0.98 of the probability
mass according to the Bayesian model, indicating that very little
probability is assigned to the 105 categories not shown. The addi-
tive model, however, assigns only 0.17 of its probability mass to
the eight categories shown, indicating that a substantial amount
of probability mass is reserved for the remaining categories in
the data set. The legend for each plot also shows the absolute num-
ber of human responses that referred to one of the eight categories
shown. In Fig. 3a, for example, 19 human responses matched a
category in our data set, and 15 of these responses matched one
of the eight categories shown.

Fig. 3 suggests that the Bayesian and multiplicative relevance
models perform similarly, but that the additive relevance model
often prefers categories that are linked with only some of the fea-
tures provided. In Fig. 3a, for example, the top choice according to
the additive model is blackbird, which can fly but does not have fur.
The Bayesian and multiplicative models successfully predict that
bat is the best response to this question.

The questions in Fig. 3 are the three that best discriminate be-
tween the Bayesian model and the additive relevance model. For
each of the 50 questions in the experiment, we computed correla-
tions between model predictions and the empirical distributions
generated by participants. Correlations for the Bayesian and addi-
tive relevance models are shown in Fig. 4a, and the three white
points represent the three questions shown in Fig. 3. Fig. 3 shows
that the correlations achieved by the Bayesian model vary across
a wide range, but that most of the points lie above the diagonal,
indicating that the Bayesian model tends to perform better than
the additive relevance model. Average correlations confirm this
conclusion, and indicate that the Bayesian (0.70) and multiplicative
(0.68) models both perform substantially better than the additive
model (0.50).

We ran a second analysis to assess the predictions of the three
models. For any given question, the top few categories according to
a successful model should account for the majority of the re-
sponses provided by participants. The ‘‘top-n inclusion curves” in
Fig. 5 are based on the proportion of human responses that fall
within the top n categories chosen by each model. The first column
shows the combined results across all 50 questions in the experi-
ment, and the remaining columns show results for the 10 one-fea-
ture questions, the 20 two-feature questions, and the 20 three-
feature questions.

The top row of Fig. 5 shows results for the critical regime where
n is small – intuitively, we hope that most human responses to a
given question will belong to the top few categories according to
a model. The Bayesian model outperforms both relevance models
on the one-feature questions, and the Bayesian and multiplicative
models both outperform the additive model when two or more
features must be considered. Fig. 5a shows, for example, that the
single best response according to the Bayesian model accounts
for 30% of human responses overall, but that the best response
according to the additive model accounts for only 16% of human
responses.

The remaining two models shown in Fig. 5 are similar to the
Bayesian model, but include only the likelihood term
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pðf1; . . . ; f njcÞ or the prior pðcÞ. Both models perform worse than
the Bayesian model – the likelihood model by a small margin,
and the prior model by a large margin. This result suggests that
both components of the Bayesian model are needed to account
for human inferences.

2.2. Experiment 2: feature identification

We developed a second experiment to explore the problem of
feature identification. Experiment 2 was very similar to Experi-
ment 1 except that participants were given categories rather than
features, and were asked to list features rather than categories.

2.2.1. Participants
20 adults participated for pay or course credit.

2.2.2. Stimuli and procedure
Participants were informed that each question would list ‘‘be-

tween 1 and 3 animals that have a certain feature”, and that they
should make three guesses about what that feature might be. A
demonstration question was included where the categories were
fruits – banana and pineapple. Nine possible guesses were listed,
including features like is yellow, is a food, grows in tropical countries,
and has a thick skin.

The experiment included 50 questions: 32 listed three catego-
ries, 12 listed two categories, and 6 listed a single category. All
questions are shown in Appendix A. Participants generated a
ranked list of three features in response to each question, and were
asked to skip any question including a category that they had never
encountered before.

2.2.3. Results
The data were coded by manually identifying the feature in ma-

trix S that best matched each response. 18% of the responses were
left uncoded because they did not correspond to any feature in the
S matrix. For several reasons the coding task was more challenging
than the corresponding task for Experiment 1. There are often sev-
eral ways to describe a given feature. Some descriptions seem very
close (e.g. jumps and moves in a jumping pattern) but other cases are
less clear (e.g. lives in water and found in water.) A second challenge
is that the semantic repository contains several groups of features
that are similar in meaning (e.g. is edible and is eaten for meat), and
we chose just one of these features for any given response. A third
challenge is that the features were provided by Dutch speakers,
and some of the feature labels (e.g. has a sharp view) are rather dif-
ferent from the labels that American undergraduates might pro-
vide (e.g. has good eyesight). Many coding decisions were
straightforward, but for those that remained we made our best at-
tempt to capture the meanings intended by our participants. The
coded data files are available online so that future researchers
can examine and perhaps adjust some of our decisions.2

Responses to three questions are summarized in Fig. 6. As for
Experiment 1, there are several good responses to most questions
in the experiment. Given, for example, that pythons, eels, and cat-
erpillars share a certain feature, participants may say that the fea-
ture is long, has no legs or writhes. The questions in Fig. 6 are again
the three that best discriminate between the Bayesian model and
the additive relevance model. The Bayesian and the multiplicative
relevance models make similar predictions, but the additive model
often prefers features that are linked with only some of the catego-
ries provided. For example, given the categories frog, lizard, and spi-
der, the top choice according to the additive model is makes a web,
but the Bayesian and multiplicative models both successfully pre-
dict that people will prefer eats insects.

Fig. 4b shows the correlations achieved by the Bayesian and the
additive models across the 50 questions in the experiment. The
majority of the points fall above the diagonal, indicating that
the Bayesian model tends to predict human judgments better than
the additive model. Average correlations confirm this conclusion,
and indicate that the Bayesian (0.58) and multiplicative (0.63) mod-
els both perform substantially better than the additive model (0.47).

Fig. 7 provides further evidence that the Bayesian model out-
performs the additive model when all questions in the experiment
are taken into account. There is no real difference between the two
models for questions where a single category is provided, but the
Bayesian model outperforms the additive model in cases where
participants must combine information about two or more
categories. Fig. 7 also shows that the Bayesian model outperforms

http://www.charleskemp.com
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Fig. 6. Responses to three of the feature-identification problems in Experiment 2.
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the two related models which include only the likelihood term
pðc1; . . . ; cmjf Þ or the prior pðf Þ. This time the margin in both cases
is substantial, and we can conclude that both components of the
Bayesian model make an important contribution.
3 The density of the entire Lombardi and Sartori matrix is around 2%, but this
matrix includes categories from several domains, including animals, musical instru-
ments, vegetables, and artifacts. If we include only the animals and the features that
were listed for at least one animal, the density increases to around 6%. The density of
the Leuven feature-listing matrix L used in our experiments is also around 6%.
2.3. Discussion

Our first two experiments suggest that people are able to solve
both category and feature-identification problems. The Bayesian
and multiplicative models achieve levels of performance that seem
roughly similar, but the additive model is substantially worse at
accounting for human inferences. This result may seem surprising,
since Lombardi and Sartori (2007) reach the opposite conclusion
and show that the additive approach provides a better account of
their data than the multiplicative approach. There are several rea-
sons, however, why these studies may have arrived at different
conclusions.

One important difference between these studies is that our
semantic matrix S is substantially less sparse than the matrix used
by Lombardi and Sartori. Around 23% of the entries in our semantic
matrix are non-zero, but the corresponding figure for the Lombardi
and Sartori matrix is around 6%.3 The reason for this four-fold differ-
ence is that our semantic matrix incorporates a listing matrix L and a
truth matrix T, but the Lombardi and Sartori matrix includes only
feature-listing data. Several other semantic matrices in the literature
are based entirely on feature-listing data (McRae, Cree, Seidenberg, &
McNorgan, 2005), and all of these matrices are likely to underesti-
mate the knowledge that people bring to identification problems.
In particular, these matrices are likely to have gaps corresponding
to facts that people know to be true but that are unlikely to be gen-
erated during a feature-listing task (e.g. the fact that hamsters
breathe air).
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Lombardi and Sartori’s results may suggest in part that the
additive approach is more robust than the multiplicative approach
when the semantic matrix contains gaps. Given, for example, that
Cs are pets, have fur, and breathe air, the additive approach may
assign a high score to hamster even though the semantic matrix
does not acknowledge that hamsters breathe air. For the multipli-
cative approach, one near-zero component (e.g. the association be-
tween hamster and breathes air) is enough to ensure that the
overall score assigned to hamster is near zero.

Tolerating gaps in the semantic matrix may be a strength when
working with an incomplete matrix but can introduce some funda-
mental problems. Consider, for example, the feature-identification
problem in Fig. 6b. Given that bees, doves, and moths have a cer-
tain feature, the additive approach assigns a high score to is an in-
sect since this feature is strongly associated with bees and moths.
Even though the feature is not associated with doves, the additive
approach is willing to overlook this gap in the semantic matrix. The
multiplicative approach, however, assigns a low score to is an in-
sect: one near-zero component (doves are not insects) is enough
to ensure that the overall score for is an insect is near zero. In other
words, the multiplicative approach alone is able to filter out fea-
tures that are not shared by all of the categories provided.

To explore whether the truth matrix T is the critical difference
between our work and the work of Lombardi and Sartori, we set
this matrix to 0 and repeated our analysis of Experiment 1. We
found that the average correlations achieved by the Bayesian
(0.68) and multiplicative (0.68) models were lower than the values
previously reported, but that both models still performed better
than the additive model (0.50). A second difference between the
studies is that we smooth the semantic matrix S by adding a small
constant to each entry, but Lombardi and Sartori do not use any
smoothing procedure. To explore the role of smoothing we re-
peated our analysis of Experiment 1 and set the smoothing con-
stant to zero. Again the performance of the Bayesian (0.62) and
the multiplicative models (0.59) dropped, but both still performed
better than the additive model (0.49). We ran our analysis one
more time and set both the truth matrix and the smoothing con-
stant to zero. The Bayesian (0.57) and multiplicative (0.56) models
still achieved higher correlations than the additive model (0.51),
but a rank analysis similar to Fig. 5 now suggested for the first time
that the additive model was superior to the others. We can there-
fore conclude that the truth matrix T and the smoothing procedure
are both required to enable the Bayesian and multiplicative models
to achieve their full potential.

Although smoothing makes an important contribution to our
results, we reanalyzed the data collected by Lombardi and Sartori
and found that their conclusions do not significantly change when
smoothing is applied. This result suggests that the relative perfor-
mance of the additive and multiplicative models must depend on
at least one additional factor that distinguishes our study from
the work of Lombardi and Sartori. There are at least two likely can-
didates. First, the dependent variable considered by Lombardi and
Sartori is naming accuracy, or the probability that a target category
will be correctly identified given the limited information available.
We propose that there are often many good responses to a given
question, and therefore work with the distribution across possible
responses (Figs. 3, 4, and 6) or the rank order of the possible re-
sponses (Figs. 5 and 7). A second notable difference is that Lom-
bardi and Sartori generated their stimuli by sampling from their
semantic matrix, but we generated our stimuli without referring
to the contents of our matrix. Sampling stimuli from a feature-list-
ing matrix will tend to minimize the impact of gaps in this matrix,
since a feature like breathes air will never be sampled if the target
category is hamster.

Although our results raise challenges for the additive
relevance model they do not clearly discriminate between the
multiplicative model and our Bayesian model. Fig. 5 suggests
that the Bayesian model outperforms the multiplicative model
by a small margin in Experiment 1, but Fig. 7 suggests that these
models perform comparably in Experiment 2. We propose, how-
ever, that the Bayesian approach may be preferred on two
grounds. First, the Bayesian approach provides a principled ac-
count of information integration that does not rely on arbitrary
decisions about whether to combine scores using a product or
a sum. There are some attempts to provide principled deriva-
tions of relevance-style approaches (Robertson, 2004), but most
of these derivations lead to additive rather than multiplicative
models. Second, the Bayesian approach relies on general-purpose
probabilistic inference, and can therefore be extended to handle
a wide range of inductive problems. Our third experiment con-
siders one of these problems and helps to illustrate the general-
ity of the Bayesian approach.
3. Experiment 3: simultaneously identifying categories and
features

Identification problems are interesting in part because they of-
ten require multiple pieces of evidence to be combined in order to
yield a solution. Our first two experiments include some simple
examples of this idea. Given, for instance, that polar bears and
swans have a certain feature, a reasoner must combine what she
knows about polar bears and swans in order to identify the feature.

Our third experiment explores a family of problems where mul-
tiple pieces of evidence must be combined in more sophisticated
and subtle ways. We consider joint identification problems, or
problems where a category C and a feature F must be identified
simultaneously (see Table 1). The category and feature are known
to be related (Cs have feature F) and additional information about
the category and feature is also provided: for example, rabbits have
feature F and Cs have stripes. Experiment 3 explores whether all
these constraints can be combined in order to identify the category
and the feature. In the case just described, a good guess might state
that feature F is fur and that category C is tiger.
3.1. Participants

30 adults participated for course credit.
3.2. Stimuli

Participants completed a written questionnaire with 60 ques-
tions. Each question listed three category-feature pairs: for exam-
ple, the joint identification problem in Table 1 was represented as

rabbit; feature F
animal C; feature F
animal C; has stripes

ð11Þ

For each question, participants made a single guess about the
identity of feature F and animal category C. The order of the ques-
tions was randomized across participants, but the three pairs in
each question were always listed in the order shown above. A dem-
onstration question was included where the categories were fruits
rather than animals:

lemon; feature F
fruit R; feature F
fruit R; is sweet

ð12Þ

Three possible guesses were listed, including is a citrus fruit for
the hidden feature and orange for the hidden fruit.
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The experiment included 60 questions which are shown in
Appendix A. The first 52 questions are organized into six category
groups and seven feature groups. Each of these groups includes four
questions. The questions in any given category group all mention
the same category (e.g. cow) but mention four different features.
The questions in any feature group mention the same feature
(e.g. eaten as meat) but mention four different categories. In addi-
tion to these category and feature groups, eight extra questions
were chosen to round out the set of 60.

3.3. Models

Our Bayesian model integrates all the available information
when guessing feature F and category C in Question (11). We can
compare this approach to a baseline that does not combine the
three statements. The baseline model uses the first statement (rab-
bits have F) to guess feature F, and uses the final statement (Cs
have stripes) to guess category C, but does not attempt to integrate
the three statements. More formally, given a joint identification
problem as shown in Table 1, the baseline model chooses a cate-
gory and a feature that maximize the distribution:

p c; f jf2; . . . ; f n; c2; . . . ; cmð Þ / p cjf2; . . . ; f nð Þp f jc2; . . . ; cmð Þ; ð13Þ

where the distributions on the right hand side are specified by the
Bayesian models used for Experiments 1 (Eq. (2)) and 2 (Eq. (4)).
This baseline combines two probabilistic models that performed
successfully in Experiments 1 and 2, but we predict that it will be
less successful than our Bayesian model at predicting people’s re-
sponses to joint identification problems.

As defined in Eqs. (6) and (13), the Bayesian and the baseline
models both allow items to be repeated. In Question (11), for
example, both models could infer that feature F is stripes and that
category C is rabbit. These hypotheses seem inconsistent with the
pragmatic expectations that participants bring to our task and
we therefore adjust both models to rule out repeats. The right side
of Eq. (5) is replaced by

p f2; . . . ; f njc; fð Þp c2; . . . ; cmjc; fð Þp c; fð Þ

¼
Yn

j¼2

p� fjjc; f
� �Ym

i¼2

p� cijc; fð Þp c; fð Þ: ð14Þ

We previously defined a distribution pðcijf Þ, and now convert
this into the distribution p�ðcijc; f Þ by setting the probability of a re-
peat to zero and renormalizing:

p� cijc; fð Þ /
0 if ci ¼ c
pðcijf Þ otherwise

�
ð15Þ

The distribution p�ðfjjc; f Þ is defined similarly, and the new dis-
tributions are used for both the Bayesian and the baseline models.

3.4. Results

The data were again manually coded. 15% of the categories and
6% of the features were left uncoded because they did not corre-
spond to entries in the S matrix. 19% of the pairs provided by
participants included at least one feature or category that does
not appear in the S matrix. Responses to three questions are sum-
marized in Fig. 8. Given, for example, that salmon have feature F,
that animal C has feature F, and that animal C builds dams, the
most common response is that feature F is lives in water and cate-
gory C is beaver.

To explore whether participants use all the available informa-
tion when choosing each component of their response, we exam-
ined the pairs chosen for each category and feature group. Fig. 9a
shows the responses for one category group (four arguments that
mention canary) and Fig. 9b shows responses for one-feature group
(four arguments that mention has fur). The first group of bars in
Fig. 9a.i shows inferences about feature F in the question:

canary; feature F
animal C; feature F
animal C; has a mane

ð16Þ

The most common response is yellow, but the next group of bars
shows that the top response changes to is a pet when has a mane is
replaced by can purr in Question (16). The final group of bars in
Fig. 9a.i shows responses from Experiment 2 when participants are
simply told that ‘‘Canaries have feature F” and are asked to guess
what the feature might be. Comparing the groups of bars, it is clear
that inferences about feature F change depending on the feature
mentioned in Question (16), suggesting that participants combine
all components of the question when choosing their response.

Fig. 9b shows a similar pattern of results, suggesting that infer-
ences about category C are also shaped by all components of the
question. The first group of bars in Fig. 9b.i shows inferences about
category C in the problem:

swan; feature F
animal C; feature F
animal C; has fur

ð17Þ

The most common response is polar bear, but the top response
changes to kangaroo when swan is replaced by grasshopper in Ques-
tion (17). Fig. 9 only has room for a single category group and a sin-
gle feature group, but similar results were obtained for all of the
category and feature groups in Experiment 3.

To support these qualitative analyses we ran permutation tests
to evaluate the null hypothesis that responses to all questions with-
in a given group were drawn from the same distribution. Responses
to each question in a category group were used to construct an
empirical distribution over features, and responses to each question
in a feature group were used to construct an empirical distribution
over categories. Within each group, we randomly shuffled re-
sponses between questions, and computed the average pairwise
Kullback–Leibler divergence between the empirical distributions
as a test statistic. Repeating this process 1000 times produces a dis-
tribution over values of the test statistic for each group, and this dis-
tribution can be compared with the value of the statistic for the
actual (i.e. unshuffled) responses. For all 13 groups, the value of
the test statistic for the unshuffled responses is extreme, allowing
the null hypothesis to be rejected (p < 0:002 in all cases).

Since Fig. 9 suggests that participants integrate the three state-
ments in each question, we expect that the Bayesian model should
outperform the baseline model across most questions in our exper-
iment. The questions shown in Fig. 8 are the three that best dis-
criminate between these two models. Note that the baseline
model often chooses a category and feature that are incompatible.
For example, in Fig. 8a the two best responses according to the
baseline model are the pairs (is a fish, beaver) and (is pink, beaver),
which are both incompatible with the statement that the hidden
category has the hidden feature. The Bayesian model successfully
identifies the most common human response to this question.

The relatively poor performance of the baseline model can be
attributed to its failure to integrate all the available information.
Fig. 9 supports this idea by showing model predictions within a
category group and a feature group. In response to any given ques-
tion, both models generate a probability distribution over all pos-
sible category-feature pairs. The predictions in Fig. 9 show the
marginal distribution over features (9a) or the marginal distribu-
tion over categories (9b). Fig. 9a.iii shows that the baseline model
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Fig. 8. Responses to three of the joint identification problems in Experiment 3.
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Fig. 9. Joint identification responses across a category group and a feature group. (a): (i) All four questions in the category group mention the category canary, and the feature
is either has a mane, can purr, crows or has a red breast. Participants were required to identify one feature of canary and the first four groups of bars summarize their responses
to the four questions. The final group of bars summarizes responses from Experiment 2 when participants were told that canaries have F and asked to identify this feature. (ii)
Predictions of the joint identification model. (iii) Predictions of the baseline model. (b): (i) All four questions in the feature group mention the feature fur, and the category
mentioned is either swan, grasshopper, bee or turtle. Participants were required to identify one category with the feature fur, and the first four groups of bars summarize their
responses. The final group summarizes responses from Experiment 1 when participants were told that Cs have fur and asked to identify category C.
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makes identical inferences about feature F for all questions within
the same category group, and 9b.iii shows the corresponding result
for all questions within the same feature group. Figs. 9a.ii and 9b.ii
show that the Bayesian model provides a better account of infer-
ences within each group. Note, for example, that the Bayesian
model successfully predicts the top human choice across the first
three questions in the has fur feature group.

The correlations achieved by the Bayesian and baseline models
across the full set of questions are shown in Fig. 10. The three plots
show how well the two models predict the marginal distribution
on features, the marginal distribution on categories, and the
distribution on category-feature pairs provided by our participants.
The majority of data points fall above the line, indicating that the
Bayesian model outperforms the baseline model on most
questions.

The rank analysis in Fig. 11 provides further evidence that the
Bayesian model performs better than the baseline model. Fig. 11a
shows how accurately the models identify the hidden feature F,
and Fig. 11b shows how accurately the models identify the hidden
category C. These curves are again computed using marginal distri-
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butions over features (Fig. 11a) or categories (Fig. 11b). In both cases
the Bayesian model tends to assign a higher rank to the items cho-
sen by humans than the baseline model does. The curves in Fig. 11c
show success at identifying category-feature pairs, and again the
Bayesian model outperforms the baseline model. Even though the
number of possible category-feature pairs exceeds 80,000, Fig. 11c
shows that the top three responses of the Bayesian model account
for more than 20% of the pairs chosen by humans, and that the top
ten responses account for more than 40% of human responses.

Although the Bayesian model performs better than the baseline
model, Fig. 10c shows that there is still room to improve. Predicting
which of the 80,000 possible pairs will be chosen for any given ques-
tion is a very tough challenge, and Fig. 10c shows that the Bayesian
model achieves relatively low correlations on many questions. Our
results, however, do suggest that humans can integrate multiple
sources of information when identifying categories and features,
and future studies can aim to model this ability more closely.
4. Discussion

We presented a probabilistic model of identification and de-
scribed experiments that explore category identification, feature
identification, and joint category and feature identification. The re-
sults indicate that people can solve all of these problems, and sug-
gest that our model accounts better for human inferences than
several alternatives.

Our model captures two general principles that help to explain
how humans solve identification problems. First, prior knowledge
matters. Knowledge about which categories have which features
is obviously important, and is captured in our framework by the
distributions pðcjf Þ and pðf jcÞ. Knowledge that some categories
and features are more familiar than others is also important, and
is captured in our framework by the prior distributions pðcÞ and
pðf Þ. Our results for Experiments 1 and 2 suggest that the prior
(pðcÞ or pðf Þ) plays an important role, and show that our Bayesian
model performs better than an alternative (the Likelihood model)
which is very similar but does not incorporate a prior distribution.

The second general principle is that statistical inference helps to
explain how people integrate multiple sources of information.
Given, for example, that Cs are white and have fur, a reasoner must
combine both statements in order to guess that category C is polar
bear. Previous formal models have used several strategies to com-
bine multiple observations, and different authors suggest that
scores for individual observations can be combined using a sum
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(Lombardi & Sartori, 2007) or a product (Medin & Schaffer, 1978),
or by taking the maximum (Osherson et al., 1990). A Bayesian
approach avoids arbitrary choices between functions like these,
and provides an account of information integration that is both
principled and extremely general. Once we have specified how
the individual observations are generated, statistical inference
immediately specifies how multiple observations should be com-
bined. The same basic approach can be applied across many induc-
tive contexts. For example, a Bayesian approach can incorporate
both positive observations (animal C is white) and negative obser-
vations (animal C is not white) (Kemp & Tenenbaum, 2009), and
can adjust its predictions depending on whether the observations
are sampled randomly or chosen by a knowledgeable teacher (Xu
& Tenenbaum, 2007). To the best of our knowledge, no other ac-
count of information integration can offer all of these advantages.

4.1. Prior knowledge and the semantic repository

To model our experiments we used a semantic repository that
specifies four distributions: pðcÞ, pðf Þ, pðcjf Þ, and pðf jcÞ. As already
described, the distribution pðcÞwas defined using familiarity ratings,
and the remaining three distributions were defined using a feature-
listing matrix L and a truth matrix T. Our model depends critically on
the knowledge captured by these distributions, and it is important to
think carefully about the status of this knowledge.

At first glance the method used to generate the feature-listing
matrix L may seem almost identical to our feature-identification
task (Experiment 2). In the original feature-listing task, partici-
pants were given a category and asked to list features of that cat-
egory. In our second experiment, participants were given one or
more categories then asked to guess a feature common to all of
these categories. Since these tasks are closely related, it is natural
to wonder whether any account of feature identification based
on feature-listing data is unavoidably circular. In other words, per-
haps our model uses the results of one experiment (the feature-
listing task) to explain another (our feature-identification task)
without contributing anything important of its own.

The value added by our model is an account of how multiple
sources of information should be combined. Although Experiments
1 and 2 both included a handful of problems where only a single
piece of information was available, the majority of problems spec-
ified two or more pieces of information, and participants were re-
quired to combine all this information in order to guess the hidden
category or feature. Information integration is also the issue of real
interest in Experiment 3, where participants must combine infor-
mation about a hidden category and a hidden feature in order to
identify them both. As our comparison between the two relevance
models suggests, there are many ways in which multiple pieces of
information might be combined, and choosing to integrate infor-
mation one way rather than another (e.g. with a sum rather than
a product) can have important consequences. Our primary
contribution is an account of information integration that is both
principled and flexible enough to handle problems like the ques-
tions in Experiment 3.

Although our model takes the semantic repository for granted,
future modeling efforts can aim to explain the origins of this repos-
itory. The repository used in this paper relies on a very simple rep-
resentation – a weighted matrix – but richer representations will be
needed to capture human semantic knowledge in full. When partic-
ipants are asked whether hamsters breathe air, for example, they
are unlikely to rely on a pre-existing association between this cate-
gory (hamster) and this feature (breathes air). Instead, they probably
make an inference using representations that are much more
sophisticated than a collection of weights or associations, and that
may include taxonomic hierarchies (Collins & Quillian, 1969), logi-
cal theories (Kemp, Goodman, & Tenenbaum, 2008) and other rela-
tional structures. The feature listing and truth matrices (L and T)
collected as part of the Leuven data may approximate some aspects
of the content of human semantic knowledge, but understanding the
form of this knowledge is an important challenge for future work.

Understanding the structure of semantic representations must
go hand in hand with understanding how these representations
are used. Future work can explore how people use their semantic
representations to respond to feature-listing tasks. One relevant
principle is the idea that people tend to choose maximally informa-
tive features, and this principle may help to explain why people
tend to generate features that are relatively rare (Navarro & Perf-
ors, 2010). Much work remains to be done, but ultimately it may
be possible to develop unified models of semantic cognition that
explain how semantic knowledge is represented and how compu-
tations over these representations support both feature listing and
identification.

4.2. Limitations of the model

Although our Bayesian model performs well with respect to the
relevance models it does not account for the human data in all
cases. Fig. 12 shows results for the two questions in each experi-
ment that produced the greatest departure between model predic-
tions and human responses. These questions correspond to the
points with the smallest y coordinates in Figs. 4a, 4b and 10c.

The six examples in Fig. 12 illustrate several reasons why the
model sometimes fails. Some of these errors appear to result from
misalignments between the English features provided by our par-
ticipants and the Dutch features in the Leuven data. For example,
Fig. 12b.i shows a case where the top human choice (edible) re-
ceives low probability according to the Bayesian model. The reason
is that edible does not appear among the features of sheep in the
listing matrix L, although its meat is eaten appears with relatively
high weight. Fig. 12c.i shows a case where the best responses
according to the Bayesian model and our participants are identical
except that the model response includes the feature can jump far
and the human response includes the feature jumps. Some discrep-
ancies of this kind may reflect subtle differences in meaning be-
tween English and Dutch words. Others may simply indicate that
coding responses to feature-listing tasks is challenging, and that
the decisions made by our coders may not always match the deci-
sions made by the team that compiled the Leuven data.

Other model errors may result from the way in which we con-
verted the Leuven data to a truth matrix T. Recall that four partic-
ipants provided acceptability judgments for all category-feature
pairs, and that we considered a pair to be true if any of the four
participants considered it to be acceptable. We reasoned that any
pair considered acceptable by one of the four raters was also likely
to be considered acceptable by at least some of the participants in
our experiment. It is likely, however that some fraction of the en-
tries in T result from idiosyncratic decisions on the part of a single
participant. Only one of the four acceptability-raters indicated that
ducks eat grass and only one indicated that cuckoos bite, and these
two ratings end up making a significant contribution to the model
predictions in Fig. 12a.i and Fig. 12b.ii. Future analyses could over-
come this problem by collecting acceptability ratings from a larger
group of participants and relying on a more stringent truth crite-
rion – for example, a category-feature pair might be considered
true only if two or more raters agree. Future analyses could also
allow raters to express degrees of acceptability, which may be use-
ful for distinguishing between pairs that are clearly true (cuckoos
breathe air) and pairs that are questionable (cuckoos bite).

The errors discussed so far appear to depend primarily on meth-
odological limitations, some of which can be addressed by future
studies. In some cases, however, the failures of our model are more
revealing. Fig. 12a.ii shows a case where killer whale is arguably the
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Fig. 12. Cases where the Bayesian model accounts least well for human inferences.
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best response by most sensible criteria. The two features (black and
white and sharp teeth) were both generated for killer whale in the
Leuven feature-listing task, and no other category (including zebra
and tiger) elicited both these responses. The feature-listing data
therefore suggest that people understand that killer whale is
strongly linked with these features, but for some reason it is diffi-
cult to retrieve killer whale when given the features and asked to
generate an appropriate category. This result may reflect a genuine
cognitive limitation – a limitation that may be diagnostic of the
structure of mental representations. For example, the result may
suggest that semantic memory is addressed more easily by catego-
ries (e.g. killer whale) than by features (e.g. black and white).

Fig. 12a.i shows a second case where a limitation of our model
may expose an important direction for future work. Failing to pre-
dict that bat and parrot are the top two responses does not seem
like a serious failing, since each response was generated by only
two participants. The real limitation of the model is that it fails
to predict that the question in Fig. 12a.i is more difficult than
any of the remaining questions in our experiment. Notice, for
example, that participants generated 29 or more responses for
each question in Fig. 3, but only 12 for the question in 12a.i. Our
model will happily provide some answer to any question that is
posed, but future models can attempt to explain why people find
some questions much harder than others, and why they sometimes
fail to generate any response at all.

4.3. Identification, categorization, and generalization

Although we have focused on category and feature identifica-
tion, previous authors have discussed related problems including
object identification, categorization and generalization. This sec-
tion discusses some of the similarities and differences between
these problems and provides a partial characterization of the full
set of inductive problems that psychologists should ultimately
aim to address. Kemp and Jern (2009) describe a more comprehen-
sive taxonomy of inductive problems that is closely related to the
account sketched here, but here we focus on the problems that are
related most closely to identification.
4.3.1. Identification
Consider first the problem of object identification. Suppose that

you work in a wildlife park and have named many of the individual
animals that you regularly see, including all members of a small
herd of zebra. We will refer to each individual as an object. If you
see a certain object (e.g. Henry the zebra) on two different occa-
sions, we will say that you have encountered two tokens of that
object. Object identification is the problem of deciding which object
corresponds to a given object token (first row of Table 2). The prob-
lem of object identification is typically solved by inferring that an
object token corresponds to a previously encountered object (e.g.
Henry), but we will say that you have solved this problem if you
correctly infer that an object token corresponds to an object that
you have never previously encountered.

Although ‘‘identification” is sometimes used to refer exclusively
to object identification, we suggest that there are several kinds of
identification problems, including both category and feature iden-
tification. Category identification (second row of Table 2) can be
defined as a problem where a category token is provided and the
task is to infer the corresponding category. Feature identification



Table 2
Fourteen inductive problems. Identification is the problem of deciding which object, category or feature corresponds to an observed object, category or feature token.
Categorization is the problem of organizing objects, categories or features into categories. Generalization is the problem of making inferences about unobserved features of
objects, object tokens, categories, or category tokens.

Problem Input Output Example input Example output

Object identification object token object = Henry

Category identification category token category Cs have stripes C = zebra
Feature identification feature token feature Zebras have F F = stripes

Object categorization object category Henry zebra
Category categorization category category category zebra natural kind
Feature categorization feature feature category stripes perceptual feature

Object generalization (object1, feature1) (object1, feature2) Henry has lost his teeth Henry is very old
Feature generalization (object1, feature1) (object2, feature1) Henry has sesamoid bones Hilda has sesamoid bones
Category generalization (category1, feature1) (category1, feature2) Zebras live in groups Zebras communicate with each other
Feature generalization (category1, feature1) (category2, feature1) Zebras have sesamoid bones Horses have sesamoid bones

Object token generalization (object token1, feature1) (object token1, feature2) has lost his teeth is very old

Feature token generalization (object1, feature token1) (object2, feature token1) Henry has F Hilda has F
Category token generalization (category token1, feature1) (category token1, feature2) Cs live in groups Cs communicate with each other
Feature token generalization (category1, feature token1) (category2, feature token1) Zebras have F Horses have F
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can be defined as the problem of inferring which feature corre-
sponds to a given feature token (third row of Table 2).

The problem of identification has been discussed by scholars
from several disciplines, including psychology (James, 1890;
Nosofsky, 1986; Rips, Blok, & Newman, 2006), machine learning
(McCallum & Wellner, 2005; Milch et al., 2005), statistics (Bunge
& Fitzpatrick, 1993), and philosophy (Millikan, 2000). Most prior
modeling and empirical work has focused on the problem of object
identification. Consider, for instance, the classic learning paradigm
where participants are repeatedly shown objects that vary along a
small number of dimensions (e.g. circles that vary in size and col-
or). Each object can be given a unique identifier, and participants
can be asked to identify each object each time it appears (Nosofsky,
1986; Shepard, 1957). Researchers working within this paradigm
have described many empirical phenomena and attempted to ex-
plain them using computational models.

Category and feature identification have received less attention
than object identification, and our names for these two inductive
problems are non-standard. Both problems, however, have re-
ceived some attention in the literature on word learning and read-
ing comprehension. Werner and Kaplan (1952) explored how
children use verbal context to learn word meanings, and developed
a ‘‘Word Context test” where participants must infer the meaning
of a novel word after hearing it used in several contexts. For exam-
ple, after hearing that ‘‘you can make a corplum smooth with sand-
paper” and that ‘‘painter used a corplum to mix his paints” you
might infer that a corplum is a stick. The same basic problem has
also been addressed using the cloze procedure (Taylor, 1953),
where some of the words in a passage are replaced with empty
slots and a reader must identify the words that fill these slots.
Computational approaches based on latent semantic analysis (Lan-
dauer & Dumais, 1997) and topic models (Griffiths, Steyvers, &
Tenenbaum, 2007) can be used to address these problems. As Stey-
vers suggests in this issue, corpus statistics and feature-listing
tasks appear to capture somewhat different kinds of information,
and ultimately it may be useful to develop accounts of category
and feature identification that combine these two sources of data
(Steyvers, 2010). Here, however, we explored an approach that re-
lies on feature-listing data alone.

4.3.2. Categorization
Although ‘‘category identification” is rarely discussed by psy-

chologists, categorization has received a great deal of attention.
Categorization can be defined as the problem of organizing items
(typically objects) into categories (typically object categories).
One example is the problem of deciding whether Henry is a zebra
or a horse (fourth row of Table 2). By default we have used ‘‘cate-
gory” to refer to a category of objects, but note that many other
kinds of category are possible. For example, object categories such
as zebra and horse are both members of the category natural kinds,
and features such as stripes and spots are both members of the cat-
egory perceptual features (fifth and six rows of Table 2).

Consider now the difference between category identification
(second row of Table 2) and object categorization (fourth row of Ta-
ble 2). Both problems may seem closely related – note, for instance,
that the output in both cases is the category zebra. The relationship
between the two seems even closer when we consider categoriza-
tion problems where the input is linguistic rather than visual. For
example, suppose that a friend tells you that ‘‘Henry has stripes”
then asks you to infer which category Henry belongs to. This catego-
rization problem may appear equivalent to the category identifica-
tion problem in Row 2 of Table 2, but note that there is a subtle
difference between the two problems. The feature provided is an ob-
ject-feature in one case (‘‘Henry has stripes”) but a category feature
in the other (‘‘Cs have stripes”). We will argue that object-features
and category features should be distinguished, and it follows that
the problems of categorization and category identification should
also be distinguished.

The most obvious difference between object-features and cate-
gory features is that some object-features cannot apply to catego-
ries and some category features cannot apply to objects. Consider a
categorization problem where you learn that ‘‘Henry has lost his
teeth”. A feature of this kind can be sensibly applied to an object
(e.g. Henry) but not to a category (e.g. zebra). On the other hand,
consider a category identification problem where you learn that
‘‘Cs are extinct”. As linguists and philosophers have emphasized,
being extinct is a feature that can sensibly be applied to a category
but not to an individual object such as Henry (Carlson, 2009). Fea-
tures like is extinct might initially seem like exotic special cases,
but features of this kind are directly relevant to the work described
here. The Leuven feature-listing data include the feature is extinct
in addition to features like exists in different sizes, can have different
colors, and often run over by cars. These last three features can sen-
sibly be attributed to objects – for instance, ‘‘Fred, who has a very
tough spine, is often run over by cars”. We suspect, however, that
the participants who generated these features were aiming for a
category-level interpretation (‘‘snakes are often run over by cars”).
As these examples suggest, the features in the Leuven database and
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in our own experiments are better viewed as category features
rather than object-features, and our work is aimed specifically at
the problem of category identification rather than categorization.

Even in cases where a feature (e.g. stripes) can be applied to
both objects and categories, the feature appears to carry different
meanings in these two cases. The statement that ‘‘Henry has
stripes” provides direct information about the physical appearance
of Henry, but the statement that ‘‘zebras have stripes” does not
indicate that the category zebra has a certain appearance. Instead,
it suggests that members of this category are striped by default,
although there may be exceptions (e.g. albino zebras or zebras that
have undergone plastic surgery). We have already seen that cate-
gory features (e.g. is extinct) can be different from object-features,
but the stripes example suggests in addition that the predication
relationship between categories and category features is different
from the corresponding relationship between objects and object-
features. For both these reasons, categorization and category iden-
tification are best treated as distinct problems.

Although it is useful to distinguish between categorization and
category identification, there are tasks that combine aspects of both
problems. Suppose, for example, that you are introduced to an ani-
mal and told that ‘‘Henry is a C”. Although formulated as a category
identification problem, this task is equivalent to an object categori-
zation problem where you are simply presented with Henry and
asked to infer his category. A category identification problem will
typically specify category features (e.g. ‘‘Cs have stripes”) rather than
examples of category members (‘‘Henry is a C”), but some problems
combine both kinds of information. For example, suppose that Hilda
looks like a white horse and you are told that ‘‘Hilda is a C, but Cs are
normally striped”. In solving this problem you will use both object-
features (e.g. the fact that Hilda has a mane) and category features
(Cs are normally striped) to infer, for instance, that C = zebra and that
Hilda is an albino. Since this task draws on both object-features and
category features, it follows that it is not equivalent to either a pure
categorization problem or a pure category identification problem.
Psychologists should ultimately aim to develop unified accounts of
induction that can handle joint problems of this kind, but here we
have focused on pure identification problems.
4.3.3. Generalization
Although identification can be studied as an inductive problem in

its own right, this problem can also arise as a component of other
inductive tasks. Consider, for example, two tasks that we refer to
as category token generalization and feature token generalization.
In the first task a reasoner is given one or more features of a category
token then asked to predict which other features the hidden cate-
gory might have. If you learn, for example, that Cs have wings, you
might be able to guess whether Cs are able to fly (compare row 13
of Table 2). Feature token generalization is a related problem where
a reasoner is told that several categories share a hidden feature then
asked to predict which other categories will have this feature. For
example, if you learn that zebras have feature F, you might be able
to predict whether horses also have this feature (row 14 of Table 2).

Our identification model can handle generalization problems
involving tokens by inferring the likely identity of the hidden item
and exploiting its pre-existing knowledge about this item. For exam-
ple, given that Cs have wings, our model might infer that category C
could be eagle and might therefore conclude that Cs can fly. Our
model, however, does not address generalization problems where
there is no uncertainty about the identity of the category or feature
involved. For example, given that Melipotes carolae was recently dis-
covered in New Guinea and that Melipotes carolae has wings, you
might infer that Melipotes carolae can fly (compare row 9 of Table
2). Similarly, given that zebras have sesamoid bones, you might infer
that horses also have this feature (row 10 of Table 2). Since both
problems refer to categories or features that are clearly novel, there
is no identity uncertainty to resolve and our model does not apply.

In general, a language learner will not know whether a novel la-
bel is a new name for a familiar category or feature or whether this
label picks out a category or feature that is genuinely new. For
example, before learning about the discovery in New Guinea you
might be unsure whether Melipotes carolae is the scientific name
for a familiar category or the name of a novel category. Young chil-
dren face a similar kind of uncertainty – for example, a word like
‘‘cutlery” could refer to a category that a child has already noticed
or to a new category that needs to be learned. Maratsos (2001)
acknowledges both possibilities by distinguishing between two
inductive problems: ‘‘category recognition”, or the identification
of pre-existing categories, and ‘‘category assembly”, or the construc-
tion of new categories. In terms of this distinction, our work has fo-
cused on category recognition rather than category assembly, but
future work can aim to develop models that address both problems.
5. Conclusion

Humans draw on semantic knowledge to address many kinds of
inductive problems, including problems that require inferences
about categories and their features. This paper considered the
problem of identification. We presented a probabilistic account
of identification that helps to explain how identification is guided
by prior knowledge, and how humans integrate multiple sources of
information when solving identification problems. Our experi-
ments relied on three simple laboratory tasks, but our general ap-
proach may help to explain how first- and second-language
learners acquire novel labels for pre-existing concepts.

Although this paper focused on the problem of identification,
previous probabilistic approaches have addressed other inductive
problems including categorization and generalization. Future work
should aim to develop a unified framework that handles all these
problems. Humans solve many inductive problems that are related
but distinct, and a probabilistic approach can help to clarify the
relationships between these problems and to identify common
principles that support solutions to all of them.
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Appendix A. Experimental stimuli

Tables A1, A2 and A3 show the stimuli used in our three exper-
iments. In Table A3 the first row corresponds to the question:

cow; feature F
animal C; feature F
animal C; has antlers

Since the Leuven data include many idiosyncratic features, we
chose not to generate the stimuli by sampling from the distribution
assumed by our model. We instead selected the questions for each
experiment by hand, taking care to ensure that each question had
at least one sensible answer, and that many questions had several
good answers.



Table A1
Stimuli used in Experiment 1 (category identification).

stings
is edible
has wings
climbs trees
has fur
eats grass
frightens people
has a long neck
has sharp teeth
is a pet
has a long neck has a beak
is grey has sharp teeth
is white has feathers
jumps has six legs
is slow lives in Africa
is yellow has sharp teeth
is green is a predator
is a pet sings
is smart used as a laboratory animal
is nocturnal has sharp teeth
is edible jumps
is yellow and black has fur
lives in cold areas has a beak
can fly has fur
is a pet has two legs
is black and white has sharp teeth
is hunted is yellow and black
can fly eats grass
has two legs is nocturnal
has four legs is pink
has a long neck has wings can not fly
is green has a rough skin has a long tail
eats mice is nocturnal has four legs
is edible is hunted eats grass
is a pet has many colors lives in a cage
jumps is small bites
has long ears is grey has a long tail
is black and white can swim lays eggs
eats plants has fur is brown
is dangerous is yellow has a tail
has many colors has a tail has two legs
is long is poisonous has a tongue
is black is unhygienic buzzes
lives in water has two legs has feathers
has whiskers has sharp teeth lives in Africa
can be ridden is grey lives in Africa
is white mammal eats grass
is striped has four legs runs fast
has hooves is pink is round
has claws has feathers is nocturnal

Table A2
Stimuli used in Experiment 2 (feature identification).

cow
ant
salmon
canary
mouse
butterfly
ant fly
eagle penguin
giraffe swan
ostrich butterfly
squid beaver
turkey woodpecker
duck sparrow
crocodile python
goldfish hamster
salmon trout
cockroach ladybug
grasshopper kangaroo
bee dove moth

Table A2 (continued)

cuckoo turtle flea
donkey rhinoceros shark
frog grasshopper turtle
dolphin mouse bat
alligator cobra piranha
ant blackbird killer whale
zebra lizard peacock
cod squid penguin
deer hedgehog squirrel
snake goldfish sardine
dove polar bear swan
alligator sparrow wasp
crocodile seagull hippopotamus
frog lizard spider
salmon turkey sheep
alligator wolf shark
bee mosquito wasp
bumblebee dragonfly beetle
shark dolphin trout
python eel caterpillar
pig cow salmon
deer lion fox
mosquito bumblebee fly
viper wasp crocodile
peacock chameleon butterfly
cricket cockroach turtle
tiger falcon deer
penguin salmon turtle
cow kangaroo zebra
cat lizard zebra
owl mouse moth

Table A3
Stimuli used in Experiment 3 (joint category and feature identification).

cow has antlers
cow is pink
cow has whiskers
cow lays eggs
salmon has fins
salmon lives in cold areas
salmon chews the cud
salmon builds dams
canary has a mane
canary crows
canary can purr
canary has a red breast
mouse can see in the dark
mouse eats bananas
mouse climbs trees
mouse swims in a bowl
butterfly sings
butterfly has six legs
butterfly lives in a cage
butterfly makes honey
penguin is white
penguin lays big eggs
penguin has fins
penguin is striped
polar bear eaten as meat
kangaroo eaten as meat
cod eaten as meat
elephant eaten as meat
mouse has wings
ant has wings
polar bear has wings
canary has wings
salmon has sharp teeth
penguin has sharp teeth
grasshopper has sharp teeth
owl has sharp teeth
chicken is a pet
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Table A3 (continued)

squirrel is a pet
salmon is a pet
tiger is a pet
cat frightens people
salmon frightens people
owl frightens people
deer frightens people
lion has a long neck
robin has a long neck
zebra has a long neck
chicken has a long neck
swan has fur
bee has fur
grasshopper has fur
turtle has fur
penguin is white
ant has many colors
fly is nocturnal
pig chews the cud
sheep eats fish
hippopotamus lives in the sea
donkey is striped
chicken is big
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