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Abstract

In this paper we propose an empirical prediction method to retrieve, for a given ordinal criterion
and a set of binary predictors, a series of nested sets of predictors, each set containing all singly
necessary (and, if feasible, jointly sufficient) predictors for a particular criterion value. The method
extends a previously developed approach to construct approximate Galois lattice models of binary
data. After sketching an outline of the new model and associated algorithm we illustrate our method
with an application to real psychological data on the experience of anger.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In several empirical applications, the aim is to look for logical relations between a crite-
rion variable and a set of predictor variables. In case both the criterion and the predictors
are binary (that is, each variable can take the value of either 0 or 1) different models
have been proposed within the context of classification analysis where the problem comes
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down to finding appropriate classification rules. Examples of models dealing with perfect
connections between predictors and criterion have been proposed by several authors[10,21]
in the context of Boolean function analysis. In empirical prediction problems, however the
condition of perfect equivalence of a criterion with a logical combination of predictors is
seldom met because of error-perturbed data and/or incomplete sets of predictor variables;
for such cases, various models that allow for imperfect connections between predictors and
criterion have been developed (e.g.,[14,18,19,15]).
A particular case where logical relations are of use is the situation in which two differ-

ent types of variables (e.g., binary vs. ordinal, or binary vs. interval) are involved in the
prediction problem. In this paper we propose an new empirical method within the domain
of combinatorial data analysis[1,11] for the prediction of an ordinal criterion by means of
a logical combination of binary predictors. As such, combinatorial data analysis (CDA) is
concerned with “the location of arrangements of objects that are optimal for the represen-
tation of a given data set and is usually operationalized using a specific loss-function that
guides the combinatorial optimization process”[1, p. 5]. Usually, CDA does not postulate
any stochastic model as underlying the data set. Typically, CDA is based on a deterministic
structure that is fitted to the data while not including an explicit error model. Useful applica-
tions of CDA models are within the context of exploratory data analysis where, mainly for
descriptive purposes, a researcher may adopt a deterministic model to suggest hypotheses
or explanations about the data structure. In the present paper, we will take such a descriptive
approach to deal with the prediction problem as mentioned above (although a stochastic
extension of our approach would be considered as well—see, e.g.[17]).
We introduce the prediction problem in a more formal way. Letc be an ordinal criterion

that takes values on an ordered setV = {v0, v1, . . . , vt } (with vj ≺ vj+1), andP a set of
dichotomous potential predictorsp1, p2, . . . , pm. For example, in a psychiatric diagnosis
scenario the symptomdepressive moodmight be characterized by a 0–6 severity rating
scale. On the other hand, symptoms likemotor retardation, guilty feelingsandsomatic
concernmight be considered as potential binary predictors of the depressive mood-state.
Our method attempts to find a setR of nested conjunctive combinations, whereRj inR

is equivalent to
∧

Pj , wherePj constitutes a maximal set of singly necessary predictors
for vj (or, if it turns out feasible, a maximal set of singly necessary and jointly sufficient
predictors forvj ). More formally, eachRj ∈ R (j = 0, . . . , t) takes the form

∧
Pj with

Pi ⊆ Pi+1 ⊆ P (i = 0, . . . , t − 1). Note that in this way the order relation≺ onV is also
reflected by the hierarchical structure of the prediction rules.
The nested conjunctive combinations looked for have particular substantive relevance

in several contexts where the intensity of a particular attribute may be conjectured to be
theoretically related to a sequence of nested sets of more basic features[9,22,20,6]. For
example, a quantitative psychological dimension, such as psychiatric sickness, often may
be conjectured to correspond to a sequence of nested sets of symptomswhich is such that the
symptoms associated withb include the symptoms associated withawheneverb represents
a more severe level of sickness thana.
It is straightforward to show that Galois lattice techniques[2,8,27,5] can be used in

the prediction problem as sketched above, provided an appropriate recoding of the ordinal
criterion under study into a set of dummy variables (see Section 3). Traditional Galois
lattices, however, yield exact representations of data sets. The latter may be troublesome in
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empirical prediction problems for two types of reasons: First, in case of data sets that are not
very small, the high complexity of the associated lattices can be very difficult to manage.
Second, in case of error perturbed data, exact representations may be simply undesirable.
A possible way out consists of approximating the data matrix with a model matrix that

has a much simpler lattice representation. A method to construct suchapproximate Galois
lattices, and with which the present paper immediately links up, has been proposed by Van
Mechelen[24], and Van Mechelen et al.[25]. Unfortunately, classical approximate Galois
lattices also suffer from some limitations when applied to the ordinal prediction problems
sketched above. In particular: (1) there is no guarantee that they correctly represent the nat-
ural order relation implied by the ordinal target criterion, (2) in the construction of classical
approximate lattices of [criterion + predictor] variable data, criteria and predictors equally
contribute to the loss function; such a symmetric treatment, however, may be undesirable
given that, whereas the criterion is always important, the predictor set may include both
relevant and irrelevant predictors. Note in this respect that, within a Boolean prediction
context, a predictor is defined irrelevant for a given criterion whenever all four possible
logical combinations: (1) “false positive”:p = 1 andc = 0 (2) “false negative”:p = 0
andc = 1 (3) “true positive”:p = 1 andc = 1 and (4) “true negative”:p = 0 andc = 0,
show up in a non-negligible number of cases. For example, in a psychiatric diagnosis sce-
nario the symptomsuspiciousnessmight be an irrelevant predictor for a diagnosis of simple
schizophrenia in that this symptom could be partially present in schizophrenic as well as in
non-schizophrenic patients.
The method to be presented in this paper, which is called OPHICLAS (hiclas model for

prediction of an ordinal criterion) is a novel extension of the approximate Galois approach
to deal with the problem of predicting an ordinal criterion variable on the basis of binary
predictors. Interestingly this new method has two important features:

(1) it guarantees that the order relation inV is well represented in the approximate Galois
lattice;

(2) in the data analysis, it allows one to obtain a good representation of the criterion in the
lattice in the presence of both relevant and irrelevant predictors in the data.

To provide a self-contained exposition, the next section (Section 2) briefly recapitulates the
main aspects of the approximate Galois lattice method. Section 3 proceeds with showing in
which way the novel OPHICLAS method can be adopted to solve the prediction problem.
Finally, Section 4 illustrates the newmethod with an application to real psychological data.

2. Approximate Galois lattices

LetSbe a binary relation over the Cartesian productO × A, whereO andA are a finite
set of objects and a finite set of binary attributes, respectively. Moreover, letf andg be two
mappings:f (X)={y ∈ A : ∀x ∈ X, (x, y) ∈ S} andg(Y )={x ∈ O : ∀y ∈ Y, (x, y) ∈ S}.
Both mappings constitute a Galois connection between 2O and 2A (resp. 2A and 2O ). If we
define�O = g ◦ f and�A = f ◦ g then the setS of all maximal rectangles (also called
formal concepts) ofS is defined as

S= {(�O(X), f (X)) : X ⊆ O} = {(g(Y ), �A(Y )) : Y ⊆ A}.
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S constitutes a latticeL = 〈S,�〉, where(X1, Y1)�(X2, Y2) ⇔ X1 ⊆ X2(⇔ Y2 ⊆ Y1),
with join andmeetrepresented by

(X1, Y1) � (X2, Y2) ≡ (�O(X1 ∪ X2), Y1 ∩ Y2),

(X1, Y1) � (X2, Y2) ≡ (X1 ∩ X2, �A(Y1 ∪ Y2)),

respectively. The latticeL is calledGalois lattice[2] (or formal concept lattice[27,5]) and
LO = 〈SO,⊆〉 (withSO = {�O(X) : X ⊆ O}) andLA = 〈SA,⊆〉 (withSA = {�A(Y ) :
Y ⊆ A}) are called its object projection lattice and attribute projection lattice, respectively.
LA represents implication relations between an attribute and conjunctive combinations

of other attributes. In general, if�A({a1}) ⊇ �A({a2, . . . am}) thena1 implies the conjunction
of a2, . . . , am. Moreover, if�A({a1})= �A({a2, . . . am}) then the conjunction ofa2, . . . , am
is equivalent witha1. We denote these two types of relations bysimple implication(a1 ⇒
a2 ∧ · · · ∧ am) andperfect equivalence(a1 ⇔ a2 ∧ · · · ∧ am), respectively.
Galois lattices of empirical binary relations are typically very complex, even with data

sets of moderate size. Moreover in case of error perturbed data an exact representation of
the lattice could be troublesome. In this latter case, small changes in the original data set
may lead to considerable changes in the set of maximal rectangles (resp. formal concepts)
and therefore in the lattice structure. Within a lattice context several authors have proposed
non-stochastic solutions to deal with error perturbed data[4,7,23]. In particular, onemethod
to deal with both the complexity problem and the problem of error-perturbed data, and with
which the present paper immediately links up, has been proposed by Van Mechelen[24],
and Van Mechelen et al.[25]. This method is based on the idea ofapproximate Galois
latticesand does not rely on external information to retrieve more robust lattice structure.
An approximate Galois lattice with restricted size and length of a given binary relation

S ⊆ O×A can be obtained by performing a conjunctive HICLAS analysis on the incidence
matrixD of S [24,25]. Such an analysis[25] approximatesD by a model matrixM r that
can be decomposed into two binary matrices{Sr ,Pr} by the following rule:

D ≈ M r = [SCr ⊗ P′
r ]C, (1)

where⊗, C , P′
r and r denote the Boolean matrix product[12], complement, transposed

of matrixPr and rank of the model decomposition (that is, the number of columns ofSr
andPr ), respectively. In particular,Sr (resp.Pr ) definesr possibly overlapping clusters of
objects (resp. attributes). The approximation is done such that for a fixed rankr the loss
function

E =
∑
i

∑
j

|dij − mij | (2)

is minimized. It is easy to show that the Galois lattice ofM r as defined in (1) has size�2r

and length�r [25].
With regard to the problem of error-perturbed data it may be worthwhile to note that

Leenen and Van Mechelen[16] did an extensive simulation study with ‘true’ matricesT
to which error was systematically added, resulting in error-perturbed data matricesD. In
this study, it was found that the HICLAS algorithm that optimized loss function (2) had
an excellent goodness of recovery, in thatM r was usually very close toT. Therefore, the
approximate Galois lattices resulting from an HICLAS procedure may at least in part, be
looked at as an intended recovery of underlying true structures.
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3. Conjunctive prediction of an ordinal criterion variable

3.1. Standard approximate Galois lattice approach

We introduce some other basic notation. LetO andA be a set of objects and a set of
attributes, respectively. Moreover, we assume that the set of attributes is partitioned into
two distinct setsPandC, where, in particular,Pdenotes a set{p1, p2, . . . , pm} of Boolean
predictors andC a singleton{c} containing an ordinal criterion variable that takes values
on an ordered setV = {v0, v1, . . . , vt }, respectively. LetDP be then×m incidence matrix
of the relationS ⊆ O ×P (where(x, y) ∈ S iff Object x has positive value on Predictory)
anddc then × 1 ordinal criterion vector.
The final goal of an OPHICLAS analysis is to find a collectionR of nested maximal

conjunctive combinations, where eachRj inR is equivalent to
∧

Pj , wherePj constitutes
a maximal set of singly necessary predictors forvj (or, if it turns out feasible, a maximal
set of singly necessary and jointly sufficient predictors forvj ).
In order to extract the set of prediction rules from then (objects)×(m + 1) (attributes)

data matrixD = DP ∪ dc we first recodeD into ann × (m + t) Boolean data matrixD∗
which is defined as follows:

d∗
il =

{
dil if l�m,

1 if l >m anddi(m+1)�vl,

0 if l >m anddi(m+1) < vl,

(3)

for all i =1, . . . , n and for alll=1, . . . , m+ t . Next, the matrixD∗ is subjected to a rank-r
approximate Galois lattice analysis. This implies the search of a set of bundles{S∗,P∗} that
yield a model matrixM∗ via the association rule(1) which is such that the loss function
E∗ = ∑

i

∑
l |d∗

il − m∗
il | is minimized. Finally, the Galois latticeL∗

A of the model matrix
M∗ has to be constructed.
The collectionR = {R1, . . . , Rt } of nested maximal conjunctive combinations can be

derived in the following way: LetC∗ be the set{c0, . . . , ct } of recoded dummy variables
for the ordinal criterionc,A∗ = P ∪C∗ the new set of binary attributes andS∗ ⊆ O ×A∗
the new relation as defined by (3), respectively. EachRj ∈ R is equal to

∧
Pj , where

Pj = P ∩ �A∗(cj ). Notice that, given that�A∗(Pj ) ⊆ �A∗(cj ), the implicationvj ⇒ ∧
Pj

always holds for allj. Furthermore, ifcj ∈ �A∗(Pj ) then a perfect equivalencevj ⇔ ∧
Pj

holds, that is,Pj then constitutes the maximal set of singly necessary and jointly sufficient
predictors forvj .

3.2. New OPHICLAS approach

In case of the conjunctive prediction of an ordinal criterion variable the standard approx-
imate lattice approach suffers from two important limitations:

(1) It does not necessarily correctly represent the natural ordervi�vi′ (∀i′ � i).
(2) It doesnot imply any kindof tool in order to discriminate between relevant and irrelevant

predictors.
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In this section we propose an algorithmic strategy which solves the limitations of the orig-
inal conjunctive HICLAS algorithm and provides a procedure to perform a conjunctive
prediction of an ordinal criterion variable on the basis of binary predictors.
The OPHICLAS algorithm generalizes the conjunctive HICLAS algorithm as described

by Van Mechelen et al.[25] and can be split into four distinct and consecutive steps:
S1: For a fixed��1 derive a new adjusted loss function

E+ =

predictors component︷ ︸︸ ︷
n∑

i=1

m∑
j=1

|d∗
ij − m∗

ij | +

criterion component︷ ︸︸ ︷
�

n∑
i=1

m+t∑
j=m+1

|d∗
ij − m∗

ij | . (4)

In this way, we provide more weight to the criterion component, which implies a better
model representation for the criterion itself, with less influence on the loss functionE+ by
possibly irrelevant predictors.
S2: Apply aconstrained r-rank conjunctive HICLAS analysis toD∗ in order to obtain

the set of bundles{S∗,P∗} that reconstructs the model matrixM∗ ≈ D∗ via the association
rule (1) in such a way that the loss functionE+ is minimized.With aconstrainedconjunc-
tive HICLAS analysis we mean a modified version of the original conjunctive HICLAS
algorithm[25,16] that satisfies the property

p∗
j �p∗

j ′ ∀j∀j ′ ∈ {m + 1, . . . , m + t} s.t. j > j ′. (5)

Note that the addition of a constraint in Step 2 is necessary because an unconstrained
conjunctive HICLAS analysis of a recoded data matrixD∗ may yield bundle matrices
{S∗,P∗}with the submatrixP∗

c=(p∗
j : j=m+1, . . . , m+t)ofP∗ not inversely representing

the natural order onV.
The routinewhich looks formatrices{S∗,P∗}, such that (4) isminimal and (5) is satisfied,

is a constrained version of the alternating greedy procedure for HICLASanalyses (see[16]).
In particular, the submatrixP∗

c is estimated via a greedy procedure which, givenS∗, first
looks for the valuebundlepatternp∗

m+t thatminimizes (4). In thenext stepsp∗
j−1 is estimated

conditionally uponp∗
j , that is,p

∗
j−1 is chosen such as to minimize

n∑
i=1

|di(j−1) − (s∗C
i p∗

j−1)
C |

subject to the constraint thatp∗
j−1�p∗

j (j = m + t − 1, . . . , m + 2).
S3: Derive the attribute Galois latticeL∗

A fromM∗.
S4: Extract the setR of nested maximal conjunctive combinations fromL∗

A.

4. An empirical application

In this section we illustrate the new approach with an example in the field of emotion
concepts. According to several authors in this field, emotion concepts can be defined by a
set of singly necessary and jointly sufficientsemantic primitives, which are “terms of words
which are intuitively understandable (nontechnical), andwhich themselves are not names of
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specific emotions or emotional states” (see[26, p. 541]). Table 1lists some of the semantic
primitives that have been investigated in a pilot study on irritation and anger[13]. If different
levels of an emotion correspond to conjunctive combinations of semantic primitives, it may
be appropriate to apply an OPHICLAS analysis to data on the applicability of semantic
primitives (as predictors) and the intensity of a particular emotion (as the ordinal criterion)
in a particular situation.
67 students from theUniversity of Leuvenwere each asked to judge one selected negative

social situation. In particular, the subjects were asked: (1) to specify whether or not each
of the 21 semantic primitives inTable 1was true in the situation and (2) to rate the self-
experienced anger-induced by the situation on a 4-point scale (v0: I feel no anger at all;
v1: I feel a bit of anger;v2: I feel fairly strong anger;v3: I feel very strong anger). This
resulted in a 67× (21+ 1) subject by predictor+criterion matrixD. The application of
the recoding rule (2) toD provided a 67× (21+ 4) Boolean data matrixD∗. Next, this
new matrix was analyzed by means of the OPHICLAS algorithm in ranks 1–7 and�=1.3.
Taking into account the complexity of the resulting structures aswell as the rankbyweighted
percentageof discrepanciesplots, the rank5 solutionwith�=2andaweightedpercentageof
discrepancies of 7.5%was retained.Fig. 1shows the Galois latticeL∗

A of the(r=5, �=2)
model, with the empty boxes denoting the conjunctions of the respective superordinate
nodes. It is important to note that the exact Galois lattice ofD∗ yielded a much more
complex lattice representation with 836 maximal rectangles (formal concepts).1

Table 1
List of the predictors (P) for the OPHICLAS analysis in the application

P Class Semantic primitives

p1 [a] I want to change something
p2 [a] The situation is unpleasant
p3 [a] The situation is unexpected
p4 [b] I could give up
p5 [b] I could lose control
p6 [b] I feel uncertain
p7 [d] I feel frustrated
p8 [d] I feel dissatisfied
p9 [d] It is a possibly negative situation
p10 [e] I would act aggressively
p11 [f ] I could find obstacles to my goals
p12 [g] I feel injustice
p13 [i] My position could be threatened
p14 [i] I feel a limitation of freedom
p15 [j ] My self-esteem could be threatened
p16 [k] Some norms have been violated
p17 [k] Someone is acting on purpose
p18 [k] Someone is not acting on purpose
p19 [k] The situation is due to other persons
p20 [k] Someone is acting arrogant
p21 [k] Someone is over affording

1We used the software ConImp, written by Burmeister[3], in order to get the size of the exact Galois lattice
(or formal concept lattice) ofD∗.
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Fig. 1. Approximate Galois latticeL∗
A of emotion concept data. Labeled classes contain the predictors as

indicated inTable 1; regarding the criterion valuesv0, v1 ∈ [a], v2 ∈ [c] andv3 ∈ [h] (marked boxes).

Fig. 2. Maximal nested conjunctions:R0 = R1 ⊆ R2 ⊆ R3.

L∗
A contains 11 labeled classes (seeTable 1andFig. 1). Fig. 2 illustrates the nested

predictive combinations ofL∗
A. R contains two setsR0 = R1 of singly necessary and

jointly sufficient predictors and two setsR2, R3 of simply singly necessary predictors.
In substantive terms the rules read as follows: A person reports (s)he experiences a bit of
anger (or no anger) (R0=R1) in a given situation iff “the situation is unpleasantandunex-
pectedand(s)he wants to change something”. For fairly strong anger (R2) these conditions
are only singly necessary and no longer jointly sufficient (this is indicated inFig. 2with
a question mark “?”). Finally, for a person reporting very strong anger (R3) in the given
situation, in addition to the previous conditions, it is also necessary that (s)he feels frustrated
andunsatisfiedandthat (s)he thinks that the situation could have negative consequences.

4.1. Concluding remark

In several empirical contexts like, for example, clinical and social psychology[9,6], it is
important to look for maximal sets of singly necessary predictors of a given target criterion.
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However, in other situations researchers could be interested in looking for sufficient con-
ditions. Notice that maximal sets of singly sufficient predictors can also be easily derived
fromL∗

A. However, while for the necessity conditionvj ⇒ ∧
Pj the uniqueness ofPj

always holds, this is not necessarily true for the sufficiency conditionvj ⇔ ∧
Pj . In fact,

in this latter case, several setsP (1)
j , . . . , P

(u)
j of predictors could be distinctively sufficient

for vj .
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