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Abstract

In this paper we present a new model, called ARCLASS,
for computing similarity between concepts. ARCLASS
generalizes the Tversky’s Ratio model of similarity
(Tversky, 1977) and uses a non-negative matrix factor-
ization procedure to estimate abstract classes on which
similarity between concepts may be computed. We ap-
plied the model to a high-dimensional database of se-
mantic features used to describe Living and Non-living
concepts. Our results suggest that similarity between
concepts may be at the origin of many disorders of con-
ceptual knowledge and, therefore, ARCLASS may be
considered as a valuable measurement tool to test hy-
potheses about category-specific disorders.

Introduction
Modeling the capacity to “judge” one stimulus or ob-
ject as similar to another is necessary for understanding
many cognitive processes, including perception, catego-
rization, and action. However, similarity is still a mat-
ter of debate and a number of empirical and theoretical
arguments have undermined its role and validity in cog-
nitive processing (Medin, Goldstone, & Gentner, 1993;
Goldstone & Medin, 1994). Formal models of similarity
can be distinguished into two broad classes: geometrical
models (e.g., Nosofsky, 1986; Shepard, 1987; Kruschke,
1992) and featural models, also called set-theoretical
models (e.g., Tversky, 1977). The geometrical models
represent stimuli as points in a multidimensional metric
(typically Euclidean) space and similarity is treated as
a decreasing function of distance. In contrast, featural
models represent stimuli as salient subsets of features
with similarity defined as a function of the subsets of
common and distinctive features. More specifically, sim-
ilarity increases as the number of common features be-
tween objects increases, and as the number of features
possessed by only one object (distinctive features) de-
creases.

Some authors (e.g., Tversky, 1977) observed that geo-
metrical models are better suited to domains where stim-
uli vary continuously along a relatively small number of
dimensions, whereas the discrete nature of the featural
models makes them more appropriate for modeling do-
mains where stimuli are defined in terms of a large num-
ber of properties or features. Both approaches provided
a solid foundation for the similarity assessment proce-
dures used in explaining data from psychological exper-
iments of human similarity judgement. Moreover, re-
cently some new interesting model extensions have been

proposed within the two approaches (e.g., Tenenbaum &
Griffiths, 2001; Love, Medin, & Gureckis, 2004; Navarro
& Lee, 2004).

In this paper we will present a new similarity model,
called ARCLASS (Abstract Relevance Classes Model-
ing), for the computation of concept similarity in hu-
man concept representations. ARCLASS immediately
links up with previous models developed within the fea-
tural approach and is based on the notion of semantic
relevance (Sartori & Lombardi, 2004). Semantic rele-
vance (SR) is a continuous parameter which represents
the contribution of a feature to the cognitive representa-
tion “core” of a concept. More precisely, in a cognitive
system, the notion of relevance of features is intended to
capture the property of a given feature in distinguish-
ing one concept from other similar ones. SR has been
shown to play a significant role in the modeling of se-
mantic memory of normal or impaired cognitive systems
(Sartori & Lombardi, 2004; Mechelli, Sartori, Orlandi,
& Price, 2005; Sartori, Lombardi, & Mattiuzzi, 2005;
Sartori, Polezzi, Mameli, & Lombardi, 2005).

Technically, ARCLASS represents an extension of the
well known Tversky’s (1977) Ratio Model of similarity
and uses a non-negative matrix factorization (NMF) pro-
cedure (Lee & Seung, 1999) to estimate few basic ab-
stract relevance classes from a high-dimensional featu-
ral representation. The latter procedure yields a low-
dimensional semantic representation from which concept
similarities may be computed.

The paper is organized as follows. First, we introduce
the main formal aspects of the new model. Next, we
proceed with reporting an application of this new model
to real high-dimensional data on concept similarity. Fi-
nally, our conclusions are given in the last section.

The ARCLASS framework

Semantic relevance
Within a featural representation, concepts are defined
by vectors of weights codifying the intensities of features
or properties used in describing a concept domain. The
concept domain D is described by a finite set of I differ-
ent concepts (ci) and a finite set of J different features
(fj), respectively. It is worthwhile to represent D as an
I×J intensity matrix X = [xij ], where xij ∈ R+ denotes
the degree of association (intensity) between Feature j
and Concept i. If xij = 0, we say that ci and fj are
unrelated in D.



Formally, a relevance process acts by transforming X
into an I × J relevance model matrix K = [kij ], which
represents the relevance model for D. The fundamental
assumption of a relevance model is that K can be de-
composed into an I × J matrix L and a J × J diagonal
matrix G, by means of the matrix product:

K = LG (1)

In the above equation, L represents an I × J matrix of
weights with entry lij of L, denoting the local importance
of Feature j for Concept i; hence, L is called the local
importance matrix. Main diagonal diag(G) of G rep-
resents a vector of J weights with entry gj of diag(G),
denoting the overall importance of Feature j for all I
concepts; hence, G is called the global importance ma-
trix.

L and diag(G) may be derived by means of two
weighting mappings 〈φ, ψ〉:

L = φ(X), diag(G) = ψ(X) (2)

which act as a linking structure between intensity matrix
X and relevance matrix K.

Several weighting schemes may be derived to model
relevance (Sartori & Lombardi, 2004; Sartori et al.,
2005). In this paper, we refer to a simple weighting
scheme called FI × ICI (Feature Intensity × Inverse
Concept Intensity), adapted from Salton’s well-known
TF × IDF (Term Frequency × Inverse Document Fre-
quency) information retrieval measure (Salton, 1989).
Under the FI × ICI assumption, we set:

lij = φ(xij) = xij (3)

gj = ψ(x.j) = log2

(
I

Ij

)
(4)

(∀i = 1, . . . , I; ∀j = 1, . . . , J) with x.j and 0 < Ij ≤
I respectively denoting the jth–column of X and the
number of concepts in which Feature j loads a positive
intensity (that is for which xij > 0). From the above
conditions it follows that

kij = xij × log2

(
I

Ij

)
. (5)

Therefore, a feature which captures the core of the cog-
nitive representation of a concept will have both high
local importance and high global importance.

The mappings φ and ψ may be given substantive in-
terpretations. Mapping φ is a local weighting function.
It is a measure of the strength of a feature in describ-
ing a concept; the higher is the intensity xij of Feature
fj for Concept ci, the more it is dominant for that con-
cept (Ashcraft, 1978). Note that, under the FI × ICI
assumption, mapping φ reduces to the identity function.
Mapping ψ is a global weighting function. It is an in-
verse function of the degree of sharedness of fj within
the concept set. In other words, the more concepts a
given feature is connected with, the less distinctive is

that feature1. The assumption justifying the usage of
this mapping is that distinctive features would be over-
all more important than would shared features, as they
are more informative in distinguishing one concept from
others (Marques, 2005; Tversky, 1977).

Abstract relevance classes
Given that cognitive operations are limited in their ca-
pacity, it is plausible that similarity judgments depend
on reducing the complexity of information to a level that
does not exceed capacity. Therefore, we assume that
concepts can also be described by unobservable features

α1, . . . , αM , where M ¿ min{I, J}
called abstract relevance classes. The reason for assum-
ing the existence of abstract relevance classes is twofold.
First, under limited cognitive resources, it does not seem
reasonable to assume that a cognitive system uses the
whole relevance information to compute concept similar-
ity (Elman, 1993; Halford, Baker, McCredden, & Bain,
2005). Second, abstract relevance classes constitute nat-
ural superordinate information that the system can uti-
lize to cluster concepts and, therefore, boost similarity
evaluations.

Given the initial relevance model matrix K (previously
derived from X using the weighting mappings 〈φ, ψ〉),
the abstract relevance classes problem is to find two new
reduced-dimensional matrices Y (I × M) and Z (J ×
M), to approximate K by the product K∗ = YZ′ in
terms of some loss function. In the approximation of
K, M denotes the rank of the model, that is to say,
the number of abstract classes adopted in the model.
Y includes M column vectors, called abstract concept
relevance bundles, and hence Y is called the abstract
concept matrix. Similarly, Z includes M column vectors,
called abstract feature relevance bundles, and hence is
called the abstract feature matrix.

Entry yim of Y may be interpreted as the abstract
relevance of αm for Concept i, whereas, entry zjm of Z
denotes the activation of Feature j given class αm. The
original relevance value kij is approximated by the sum:

kij ≈ k∗ij =
M∑

m=1

yimzjm. (6)

In other words, the relevance kij of Feature j for Con-
cept i is approximated by the sum of the M abstract
relevances for Concept i weighted by the corresponding
activations of Feature j. The approximation of K is done
such that for a fixed rank M the loss function

L2(Y,Z) = (
I∑

i=1

J∑

j=1

(kij − k∗ij)
2)

1
2 (7)

1We assume that all J features are singly informative for
at least one concept. That is to say, each feature is connected
with at least one concept. From the latter, it follows that a
feature j shows maximal distinctiveness when connected with
one concept only, that is, when Ij = 1. Dually, a feature j
has minimal distinctiveness when feature j is connected with
all the I concepts, that is to say, when Ij = I).



is minimized subject to yim ≥ 0 and zjm ≥ 0 for each
i,j and m. Notice that the inherent nonnegative repre-
sentation in K is preserved by the matrix decomposition
as the result of the constraints placed on factorization
K∗ = YZ′ that produce nonnegative lower rank factors
that can be interpreted as semantic bundles in the con-
cept domain. The concept vectors in the original rele-
vance matrix K can be reconstructed by combining these
semantic bundles and, therefore, concept similarity can
be obtained by comparing the resulting row patterns in
the abstract concept matrix Y.

Algorithm
Algorithms designed to approximate K by solving the
constrained minimization problem (Eq. (7)) generally
begin from an initial random configuration for Y and Z.
The random assignment is constrained to non-negative
values. The routine then follows by alternating iterations
to improve the estimates of Y and Z. The factorization
algorithm used in this paper consists in the multiplica-
tive update rules of Lee and Seung (2001). One of the
advantage of the multiplicative update rules is that the
loss function L2 is monotonically nonincreasing and be-
comes constant if and only if Y and Z are at a stationary
point of L2 (Lee & Seung, 2001).

Similarity matching
Also concept similarities can be represented in a matrix
format P = [pih], where P is a square (I × I) possibly
asymmetric matrix which takes values in [0, 1]. Entry pih

of P denotes the degree of similarity between Concept
i and Concept h. If pih = 0, we say that ci and ch are
fully distinguishable, whereas, if pih = 1, then ci and ch

are totally undistinguishable.
In ARCLASS the similarity of two concepts pih is

modelled by a generalization of the Tversky’s Ratio
model (Tversky, 1977). In particular, the similarity be-
tween Concept i and Concept h is defined as a weighted
additive measure of their common and distinctive ab-
stract relevance classes which takes the following form:

pih =
∑

(yi ∩ yh)∑
(yi ∩ yh) + β

∑
(yi − yh) + γ

∑
(yh − yi)

,

(8)

where yi (resp. yh) denotes the ith-row (resp. hth-row)
of the abstract concept matrix Y, and where vector op-
erations intersection (∩) and difference (−) are defined
as

yi ∩ yh = (min{yim, yhm} : m = 1, . . . , M),
yi − yh = (max{0, yim − yhm} : m = 1, . . . , M),
yh − yi = (max{0, yhm − yim} : m = 1, . . . , M).

Finally,
∑

(·) and parameters β, γ ≥ 0, respectively, rep-
resent the summation function

∑
(c) =

M∑
m=1

cm, c ∈ RM
+ ,

X
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Figure 1: Step by step procedure to compute concept
similarities.

and different degrees of importance of distinctive com-
ponents yi − yh and yh − yi. Notice that, pih = 0 if
and only if yi ∩ yh = 0, whereas pih = 1 if and only if
yi = yh. An overall picture of the entire computation
process is illustrated in Figure 1.

An empirical application

In this section we will illustrate the new approach with
an application in the field of semantic memory. In par-
ticular, we focus on the evaluation of concept similar-
ity within natural language categories in semantic mem-
ory. ARCLASS was applied to a database of cued verbal
descriptions of 254 concepts belonging to a corpus col-
lected by Dell’Acqua, Lotto and Job (2000). A total of
2619 features were extracted from normative verbal de-
scriptions (for details see Sartori and Lombardi, 2004)
yielding a 254 (concepts) × 2619 (semantic features) in-
tensity matrix X. Entry xij of X was set equal to the
number of co-occurrences of Feature j in Concept i over
all subjects’ descriptions. Finally, relevance weights for
semantic features were computed using Eq. (5).

Similarity in low rank reduction.
The aim of this section is to empirically investigate how
concept similarity in human subjects is modulated by
the number of abstract classes involved in the factor-
ization model. The problem of how to quantify human
information processing capacity is considered crucial in
cognitive modelling of semantic memory processes. An
optimal process depends on reducing the complexity of
information that has to be processed so that the amount
of cognitive costs does not exceed processing capacity
(Elman 1993; Miller 1956). Our main hypothesis is that
cognitive systems integrate a limited number of abstract
features to compute concept similarity. An evaluation of
the low-dimensionality effect on concept similarity can
be obtained by comparing the similarities computed on
the basis of few abstract features with those processed
given the whole set of observable features. Notice that,
in terms of knowledge representation, the latter condi-
tion reduces to an optimal scenario in which the whole
information is taken into account in similarity matching.
Therefore, the loss in similarity performance due to di-
mensionality reduction may provide a direct measure of
the suboptimal processing behavior in semantic memory
systems.
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Figure 2: Loss function value E(P?,PM ) as a function
of the model rank M = 1, 2, . . . , 10.

In order to evaluate this aspect, we ran the AR-
CLASS algorithm in ranks 1-10 using the original rel-
evance model matrix K as model input2. The latter
yielded ten approximated relevance matrices

K∗
M = YMZ′M ,

one for each model rank M (M = 1, . . . , 10). Next, the
associated similarity matrices PM were computed from
the abstract concept matrices YM using Eq. (8) with
similarity parameters β = γ = 1. Finally, in order to
evaluate the optimal concept similarity representation,
we also computed the similarity matrix P? containing
the set of all pairwise concept similarities calculated on
the basis of the total J = 2619 observable features. The
latter matrix was obtained by replacing YM with K in
Eq. (8). In order to evaluate the suboptimal representa-
tion of concept similarity, as a consequence of low rank
model reductions, we used loss function (see also Fig. 2)

L(P?,PM ) =
I∑

i=1

I∑

h=1

(p∗ih − pM
ih )2 (9)

Note that in Figure 2 an elbow is present at M = 4 which
suggests that four abstract classes might be appropriate
in reconstructing with sufficient accuracy (r = 0.68) the
concept similarity representation. On the basis of the
above mentioned results, hereafter, we decided to con-
tinue the analysis on the four classes reduction P4.

Similarity distributions of Living and Non-
living categories. We analyzed similarity distribu-
tions3 within Living concepts (LV, N = 96) and Non-
living concepts (NLV, N = 156), where N refers to sam-
ple size. Furthermore, we also investigated the similarity

2We remind the reader that in an ARCLASS model the
rank M denotes the number of abstract relevance classes rep-
resented in the model.

3Given β = γ = 1, in ARCLASS a similarity distribution
of N different concepts contains all [(N − 1)N ]/2 pairwise
similarities.
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Figure 3: Category histograms based on P4 reduction.
Left side of the picture represents Living concepts. Right
side of the picture shows Non-living concepts.

distributions of four Living subcategories: animals (ANI,
N = 43), fruits (FRU, N = 20), plants (PLA, N = 12),
vegetables (VEG, N = 21), as well as of four Non-living
subcategories: clothes (CLO, N = 19), kitchen utensils
(KU, N = 19), transportation vehicles (TV, N = 23),
musical instruments (MI, N = 14). In statistical terms
a category C1 shows a larger within-similarity than an-
other category C2 if and only if the distribution of C1 is
stochastically larger than that of C2. In order to check
dominance relations among the concept categories we
adopted the Wilcoxon-Mann-Whitney test (see Siegel &
Castellan, 1988) which is a non-parametric statistic well
suited for highly skewed distributions. The similarity
density distributions for the two superordinate categories
are shown in Figure 3. Overall LV concepts were more
similar to one another than NLV ones (p < 0.001).

A Living (resp. Non-living) interval order (Fishburn,
1970) can be obtained by analyzing all pairwise subcate-
gory dominance relations. The LV interval order was as
follows:

(FRU ∼ (VEG Â∗ PLA)) Â∗ ANI,

where ∼ and Â∗ denote stochastic equivalence and
stochastic dominance4, respectively. Similarly, for Non-
living subcategories we observed the following interval
order

(CLO ∼ MI) Â∗ KU Â∗ TV.

The distributional within-category similarities, as re-
sulting from the application of ARCLASS, can be used

4The superscript ∗ stands for statistically significant at
α = 0.001. We corrected all p-values using the false dis-
covery rate statistic for multiple comparisons (Benjamini &
Hochberg 1995).



to highlight important controversial issues about im-
pairments of semantic memory. Cognitive neuroscien-
tists have shown how neurological patients with seman-
tic memory disorders may show selective impairments for
certain categories but not for others. In particular, it has
been suggested that high similarity between exemplars of
the same category may reduce the retrieval accuracy in
patients suffering from semantic disorders (Humphreys
& Forde, 2001). For example, given that Musical instru-
ments are more confusable than other Non-living con-
cepts this may explain why some patients who are spared
on Non-living may be impaired on Musical Instruments
(Dixon, Piskopos, & Schweizer, 2001). Several consis-
tent trends in terms of the categories that tend to be
impaired/spared together have been reported within the
neuropsychological literature (Capitani, Laicona, Ma-
hon, & Caramazza, 2003). The following are established
facts in semantically impaired patients: a) Living con-
cepts deficits are much more frequent than Non-living
concepts deficits, b) Fruits/vegetables pattern together
and can be separately impaired, c) Non-living categories
pattern together; these exclude musical instruments that
can be impaired along with living concepts. The high-
lighted within-category similarity clearly parallels the
empirical results on semantically impaired patients as
reported above.

Interpreting abstract relevance classes and con-
cept clustering. A further support for the plausibil-
ity of ARCLASS as a model for semantic similarity may
be obtained by analyzing the meaning of the abstract
relevance classes in the model decomposition. Meaning-
ful interpretations of the four abstract classes α1, α2, α3

and α4 can be obtained by analyzing the top-most acti-
vated concepts in the abstract stimulus matrix Y4. As
an example, Table 1 reports in descending order (for each
abstract class), the ten most relevant concepts. In sub-
stantive terms the abstract stimulus matrix Y4 reads as
follows: The grouping of concepts connected with α1 is
in line with the representation of Non-living concepts.

In particular, α1 clusters together clothes (top-most
ranking [1-18]) and tools/furnitures (middle ranking [19-
40]). Likewise α2 groups together mostly Non-living
concepts (eg. transportation vehicles, buildings, tools),
although the ranking does not reflect sharp separable
clusters. Class α3 splits musical instruments (top-most
ranking [1-15]) from tools/weapons. Finally, α4 re-
flects an hidden dimension codifying Living concepts:
fruits (approximately top-most ranking [1-11]) and veg-
etables/flowers (middle ranking). Interestingly, although
fruits and vegetables pattern together they can still be
separately impaired as they occupy different ranks in
the abstract class (fruits: top-most ranking; vegetables:
middle-ranking). Finally, also animals were clustered to-
gether (ranks [50-100]). The latter results suggest that
similarity between concepts may be at the origin of many
disorders of conceptual knowledge and, therefore, AR-
CLASS may be considered as a valuable measurement
tool to test hypotheses about category-specific disorders.

Table 1: Ten best concept examples for each abstract
class αm (ordered by decreasing abstract relevance). Un-
derlined items refer to Living concepts.

Rank α1 α2

1 (9.40) Sweater (8.56) Locomotive
2 (9.06) Dress (8.12) Train
3 (8.25) Shirt (7.57) Ambulance
4 (8.14) Undershirt (5.46) Trolley
5 (8.13) Pants (4.96) Car
6 (8.02) Jacket (4.86) Boat
7 (7.64) Shoes (4.65) Truck
8 (7.56) Socks (4.12) Bicycle
9 (6.89) Boots (3.86) Carriage
10 (6.48) Necktie (3.22) Motorboat

Rank α3 α4

1 (8.13) Guitar (10.04) Lemon
2 (8.09) Piano (8.86) Apricot
3 (7.42) Accordion (8.58) Orange
4 (7.28) Bagpipes (8.35) Apple
5 (6.63) Trumpet (8.29) Pineapple
6 (6.48) Saxophone (7.67) Fig
7 (6.08) Flute (7.66) Kiwi
8 (6.07) Harp (7.49) Pear
9 (5.96) Clarinet (7.41) Chestnut
10 (5.66) Organ (6.42) Pomegranate

Conclusion
In this paper we have presented ARCLASS, a general-
ization of the Tversky’s Ratio model of similarity which
is grounded on:

1. an abstract representation of non-observable semantic
features (the abstract relevance classes)

2. a reduction technique (NMF) which has been shown
to be useful in modeling hidden semantic structures.

We have applied ARCLASS to the field of concept repre-
sentations by analyzing a high-dimensional database of
254 (concepts) × 2619 (semantic features). ARCLASS
extracted solutions which intuitively correspond to what
humans call categories such as Animals, Vegetables, Fur-
niture etc. What is more, ARCLASS results can be ap-
plied to explain some puzzling phenomena observed in
the field of semantic memory disorders where it has been
shown that some neurological patients may be impaired
in one category (e.g. Living objects) but not in others
(e.g. Non-living objects). In sum, ARCLASS may be
considered as a new valuable tool to measure similarity
patterns within featural frameworks.

Acknowledgments
The authors gratefully acknowledge Luigi Burigana for
a critical reading of the manuscript and helpful sugges-
tions.

References
Ashcraft, M. H. (1978). Property norms for typical and

atypical items from 17 categories: A description and
discussion. Memory and Cognition, 6, 227-232.



Benjamini, Y., & Hochberg, Y. (1995). Controlling
the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal
Statistic Society B, 57, 298-300.

Capitani, E., Laiacona, M., Mahon, B., & Caramazza,
A. (2003). What are the facts of semantic category-
specific deficits? A critical review of the clinical evi-
dence. Cognitive Neuropsychology, 20, 213-261.

Dell’Acqua, R., Lotto, L., & Job, R. (2000). Nam-
ing time and standardized norms for the Italian
PD/DPSS set of 266 pictures: Direct comparisons
with American, English, French, and Spanish pub-
lished databases. Behaviour Research Methods, In-
struments and Computers, 32, 588-612.

Dixon, M.J., Piskopos, K., & Schweizer, T.A. (2001).
Musical instruments naming impairments: The crucial
exception to the living/non-living dichotomy in cate-
gory specific agnosia. Brain & Cognition, 43, 158-164.

Elman, J.L. (1993). Learning and development in neu-
ral networks: the importance of starting small. Cog-
nition, 48, 71-79.

Fishburn, P.C. (1970). Intransitive indifference in pref-
erence theory: a survey. Operations Research, 18, 207-
228.

Goldstone, R.L., & Medin, D.L. (1994). The time course
of comparison. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20, 29-50.

Halford, G.S., Baker, R., McCredden, J.E., & Bain, J,D,
(2005) How many variables can humans process? Psy-
chological Science, 16, 70-76.

Humphreys, G.W., & Forde, E.M.E. (2001). Hierar-
chies, similarity and interactivity in object recogni-
tion: “Category-specific” neuropsychological deficits.
Behavioral and Brain Sciences, 24, 453-509.

Kruschke, J.K. (1992). ALCOVE: An exemplar-based
connectionist model of category learning. Psychologi-
cal Review, 99, 22-44.

Lee, D., & Seung, H. (1999). Learning the parts of ob-
jects by non-negative matrix factorization. Nature,
401, 788-791.

Lee, D., & Seung, H. (2001). Algorithms for non-
negative matrix factorization. Advances in Neural In-
formation Processing Systems, 13, 556-562.

Love, B.C., Medin, D.L., & Gureckis, T.M. (2004). SUS-
TAIN: A network model of category learning. Psycho-
logical Review, 111, 309-332.

Marques, J. F. (2005). Naming from definition: The role
of feature type and feature distinctiveness. The Quar-
terly Journal of Experimental Psychology: Section A,
58, 603-611.

Mechelli A., Sartori, G., Orlandi, P., Price, C.J. (2005).
Semantic relevance explains category effects in medial
fusiform gyri. Neuroimage, in press.

Medin, D.L., Golstone, R.L., & Gentner, D. (1993). Re-
spects for similarity. Psychological Review, 100, 254-
278.

Miller, G.A. (1956). The magical number seven, plus or
minus two: some limits on our capacity for processing
information. Psychological Review, 63, 81-97.

Navarro, D.J., & Lee, M.D. (2004). Common and dis-
tinctive features in stimulus similarity: A modified
version of the contrast model. Psychonomic Bullet-
tin & Review, 11, 961-974.

Nosofsky, R.M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of
Experimental Psychology: General, 115, 39-57.

Salton, G. (1989). Automatic text processing: The trans-
formation, analysis, and retrieval of information by
computer. Reading, MA: Addison-Wesley.

Sartori, G., & Lombardi, L. (2004). Semantic relevance
and semantic disorders. Journal of Cognitive Neuro-
science, 16, 439-452.

Sartori, G., Lombardi, L., & Mattiuzzi, L. (2005). Se-
mantic relevance best predicts normal and abnormal
name retrieval. Neuropsychologia, 43, 754-770.

Sartori G., Polezzi, D., Mameli, F., Lombardi L. (2005).
Feature type effects in semantic memory: An event
related potentials study. Neuroscience Letters, 390,
139-144.

Shepard, R.N. (1987). Toward a universal law of gener-
alization for psychological science. Science, 237, 1317-
1323.

Siegel, S., Castellan, N.J. (1988). Nonparametric statis-
tics for the behavioral sciences (2nd ed.). McGraw-
Hill, New York.

Tenenbaum, J.B., & Griffiths, T.L. (2001). Generaliza-
tion, similarity, and Bayesian inference. Behavioral
and Brain Sciences, 24, 629-640.

Tversky, A. (1977). Features of similarity. Psychological
Review, 34, 327-352.


