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A Hierarchical Classes Approach
to Discriminant Analysis

Luigi Lombardil'2, Eva Ceulemans!, and Iven Van Mechelen!

! Department of Psychology,

Katholieke Universiteit Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
? Department of Developmental Psychology,

Universita di Padova, via Venezia 8, 35100, Padova, Italy

Abstract. Given an I X J object by attribute binary data matrix, and a predefined
partition of the I objects into K partition classes, one may wish to characterize each
of the K partition classes in terms of a set of singly necessary and jointly sufficient
attributes; from the latter sets one may further derive attributes or attribute pat-
terns that discriminate among the partition classes. In this paper, we propose how
this goal may be achieved by fitting a new type of constrained hierarchical classes
model, called D-HICLAS, to the data matrix. An algorithm for fitting D-HICLAS
models is presented and an application to real data is discussed.

1 Introduction

Consider the following situations

e A marketing manager is interested in determining product qualities that
best describe a given bunch of product categories.

¢ A medical researcher is interested in determining symptoms that signifi-
cantly differentiate among known groups of psychiatric patients.

e A psychologist wants to investigate which cognitive profiles best charac-
terize different given groups of students in primary school.

Each of these examples involves a characterization of given categories in terms
of a predefined set of descriptors.

A particular case is the situation in which one wants to characterize each
of K possible categories by means of a set of singly necessary and jointly
sufficient binary attributes. From these sets one may further derive attributes
or attribute patterns that possibly discriminate among the categories.

More formally, consider an I x J binary data matrix D defining a binary
relation between a set of I objects and a set of J attributes, and an I x K
binary partition matrix P defining a K—partition of the object set where, in
particular, p;z = 1 denotes that object 7 belongs to class k. Assume further
that all classes of the K—partition are homogeneous with respect to each of
the J attributes. The characterization problem then boils down to finding a
K x J binary matrix C, called the characterization matriz, such that the
quantity

o K
E = ZZ |dij— Zpikckjl . (1)

=1 j=1 E=l



is minimal. It is straightforward to show that (1) is minimal if, given the
proportion mx; (Vk = 1,...,K;Vj = 1,...,J) of objects in class k which
possess attribute j, the entries c; of C. are replaced with

- 1 if 7i'g,j2.50 = 1 .
zkj_{ﬂ if m; <.50 (Vk=1,...,K; Vj=1,...,J) (2)

The matrix Z yields an exact solution to the minimization of (1). However,
an exact representation of C itself may be troublesome in empirical data
matrices. In particular, in case of data sets that are not very small and with
a large number of attributes, the high complexity of the characterization sets
can be very difficult to interpret. A possible way out consists of approximating
C by means of a matrix that has a much simpler structural representation.

The method to be presented here, which is called D-HICLAS (HICLAS
model for descriptive Discriminant analysis), is a novel extension of the con-
junctive HICLAS model (Van Mechelen et al., 1995) to deal with the problem
of approximating the characterization matrix C. A D-HICLAS model yields
a simplified approximation of C by reducing the original set of attributes
to a few binary variables, called bundles. Moreover a D-HICLAS analysis
guarantees also that the K—partition is well represented in the model.

Section 2 of this paper outlines the general theory of D-HICLAS model
and the associated data analysis. Section 3 illustrates the new model with
an application to real psychological data. Finally in Section 4 some possible
model extensions are discussed.

2 Descriptive discriminant HICLAS approach

2.1 The model

We assume an I x J object by attribute data matrix D and an I x K binary
partition matrix P defining a K-partition on the objects (K-categories). A
descriptive discriminant hierarchical classes analysis will approximate D by
an I x J reconstructed binary matrix M that can be decomposed into P and
a K x J binary matrix M* that approximates the characterization matrix C.
M?* can be further decomposed into a K x R binary matrix A and a J X R
binary matrix B, where R denotes the rank of the model. In particular,
A defines R, possibly overlapping, clusters of the K—categories, whereas B
defines R, possibly overlapping, clusters of attributes. As a guiding example
we use the hypothetical matrices shown in Tables 1-3.

2.2 Relations represented in D-HICLAS model

The D-HICLAS model represents three types of relations defined in M*:
association, equivalence and hierarchy.

The association relation is the binary relation between the categories and
the attributes of M* as defined by the 1-entries of M*. Equivalence relations
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are defined on the categories and on the attributes of M*. Categories are
equivalent iff they are associated with the same set of attributes. Likewise
attributes are equivalent iff they are associated with the same set of cate-
gories. A hierarchical relation is defined among the categories and among the
attributes of M*. A category is hierarchically below another, iff the respective
sets of associated attributes are in a subset/superset relation. Similarly, an
attribute is hierarchically below another, iff the respective set of associated
categories are in a subset/superset relation.

The matrices A and B of a D-HICLAS model represent the three relations
as follows

i) Association relation:
M = PM* (3)

with M* = [A° ® B']° (where ® denotes the Boolean matrix product

(Kim, 1982)). This association rule means that for an arbitrary entry
mi; of M,

K
- *
mi; = ) pikmi;

k=1
K R %
= zpik (@ azrbjr) (4)
k=1 r=1

where mj; indicates the (k, j)-entry of M* and €D denotes the Boolean
sum (Kim, 1982). Moreover (3) implies that for an arbitrary entry m;;
of M,

m,—,-:l & disl..dt ¢t Ppag=Lt A m;_,-:l (5)
where
mp;=1 & Vr:1L,...,R : bijr=1 = ar=1 (6)

In (6) the B row vector of an attribute can be considered to denote a set
of formal requisites stemming from that attribute; these requisites are
to be jointly met by a category to be associated with the attribute in
question. For example, from the model in Table 3, it can be derived that
category C; is associated with attribute ¢. This further implies that all
objects in category C; = {1,2,3} are also associated with attribute c.

i1) Equivalence relations: A category k (resp. an attribute j) is equivalent to
another category k' (resp. another attribute j') if and only if Aj. = Ay
(resp. B;. = Bj.). For example, categories C, C2 and C3 are associated
with different set of attributes, and, hence, those categories are not equiv-
alent and have different row vectors in the A matrix of the D-HICLAS
model of Table 3. On the other hand, notice that by (3) all objects be-
longing to the same category share the same attribute pattern.



ii) Hierarchical relations: A category k (resp. an attribute j) is hierarchi-
cally below to another category k' (resp. another attribute j') if and only
if Ag. < Ag: (resp. B;: > Bji.). Note that for B this reversal (>) re-
flects the fact that the more requisites stem from an attribute, the fewer
categories that attribute is associated with. For example, attribute c is
hierarchically above attribute d; consequently, the bundle patterns of at-
tributes c and d are in a subset /superset relation in the D-HICLAS model
of Table 3.

Graphic representation. Figure 1 presents a graphic representation for the
D-HICLAS model of Table 3. In Figure 1 category and attribute classes are
displayed as paired boxes, the upper box of each pair being a category class
and the lower box an attribute class. The top of the category hierarchy is at
the top of the representation, whereas the attribute hierarchy is represented
upside down. The association relation can be read from the representation as
a dominance relation: A category is associated with all attributes below it,
and an attribute is associated with all categories above it.

D M

Attributes Attributes
Objectsabc d Objectsabec d
Objl1 101 0 Obj1 101 0
Obj2 111 0 Obj2 101 0
Obj3 101 0  Obj3 101 ©
Obj4 001 1 Obj4 001 O
Obj5 001 0 Objs5 001 O
Obj6 011 0 Obj6 011 0
Obj7 001 0 Obj7 011 0

Table 1. Hypothetical data matrix D and related D-HICLAS model matrix M

P M*

Categories Attributes
Objects C; C2 C3 Categoriesa bc d
Objl1 1 0 0 Ch 101 0
Obj2 1 0 0 Ca 001 O
Obj3 1 0 0 Cs 011 0
Obj4 0 1 0
Obj5 0 1 0
Obj6 0 0 1
Obj7 0 0 1

Table 2. D-HICLAS Model decomposition for matrix M in Table 1



A B

Bundles Bundles
Categories I II  Attributes I 1]
C 0 1 a 0 1
Cs 0 0 b I @
Cs 1 0 £ 0 O
d 1 1

Table 3. D-HICLAS Model decomposition for matrix M* in Table 2

5] C3

2

Fig. 1. Graphic representation of the conjunctive D-HICLAS model of Table 3.
Empty boxes denote empty classes.

2.3 Data analysis and algorithm

The aim of a D-HICLAS analysis in rank R of a binary data matrix D and
a given partition matrix P is to approximate D as closely as possible by a
reconstructed binary model matrix M, in terms of the loss function

I J
L= Ez Idi.f = mg:,-l (7)

=1 j=1
and such that M can be represented by a rank R D-HICLAS model.
The routine which looks for matrices {A, B}, such that (7) is minimal is
a modified version of the alternating greedy procedure for ordinary HICLAS
analysis (Leenen and Van Mechelen, 2001). In particular, the D-HICLAS
algorithm successively executes two main routines.

i) Given an initial random configuration, A° for A, the procedure looks,
conditionally upon A°, for the optimal matrix B°, which is such that



(7) is minimal. In the next steps, A¥ is reestimated conditionally upon
B¥~1, and BY is reestimated conditionally upon A% (w = 1,2...). This
procedure continues until no further improvement in the loss function (7)
is observed.

A conditional estimate for A (resp. B) is obtained by a greedy heuristic
which successively estimates each row of A (resp. B). In particular, given
A, the j-th row B;. of B (Vj = 1,...,J) is optimized by means of a
Boolean regression that minimizes

I
L = E |dij — mi;] (8)

=1

Whereas, given B, the k~th row Aj. of A (Vk = 1,...,K) is optimized
by means of a generalized form of Boolean regression that minimizes

J
Liy= D > ldij — majl 9)

=1 j=1

More precisely, in this regression the values of each predictor variable
are N = Zf pir concatenated copies of each column of B, whereas the
values of the criterion vector are the data—entries d;; (Vi : pir = 1;Vj =
j RS, |

i) In the second main routine the matrices A and B obtained at the end
of the first routine are modified such as to make them consistent with
the equivalence and hierachical relations in the model matrix M, that A
and B yield by (3). For this, a closure operation (Barbut and Monjardet,
1970) is successively applied to each of the two matrices A and B. This
operation implies that zero—entries in the two matrices are turned into
one if this change does not alter M (and, hence, neither the value of the
loss function).

3 An empirical application

In this section we present a D-HICLAS analysis of data from a study on
archetypal psychiatric patients (Mezzich and Solomon, 1980). In this study
each of 11 psychiatrists was invited to think of a typical patient for each
one of four diagnostic categories: manic-depressive depressed (MDD), manic-
depressive manic (MDM), simple schizophrenic (SS) and paranoid schizophrenic
(PS). These four diagnostic categories are part of the nomenclature of mental
disorders (DSM-II) issued in 1968 by the American Psychiatric Association.
The 11 psychiatrists characterized each archetypical patient by 0 — 6 severity
ratings on 17 symptoms from the Brief Psychiatric Rating Scale (BPRS).
In order to yield a D-HICLAS analysis each symptom of the original
data base was trichotomized into two dummy variables indicating at least a
medium severity rating (1—6) and an high severity rating (3—6), respectively.



This resulted in a 44 x 34 patient by symptom data matrix D. Next, D was
analyzed by means of the D-HICLAS algorithm in ranks 1 to 5.

On the basis of a scree test, the rank 3 solution with a proportion of
discrepancies of .167 was retained. Figure 2 shows the graphic representation
of the conjunctive D-HICLAS rank-3 solution.

'H mannerism
PS (.817) MDD (.712)

H susPiciousness H depressive mood
H hallucinatory behavior H guilty feelings
H unusual thought contents| H motor retardation

MDM (.716) SS (.617)
H grandiosity H somatic concern
H excitement H emotional withdrawal
H hostility M depressive mood

\/

M uncooperativeness
M unusual thought contentsl

M anxiety

Fig. 2. Graphic representation of the conjunctive D-HICLAS rank-3 solution. Di-
agnostic categories are displayed in the upper boxes, symptoms in the lower boxes.
M and H denote medium rating and high rating, respectively.

The graphic representation reads as follows:

Diagnostic categories and symptom classes are displayed as paired boxes,
the upper box of each pair containing diagnostic categories and the lower
box containing symptoms. The top of the diagnostic category hierarchy is at
the top of the representation, whereas the symptom hierarchy is represented
upside down. In order to simplify the graphic representation we inserted in
each symptom class the three best fitting symptoms only. Moreover, for each
diagnostic category we displayed both the label and the goodness of fit in the
upper boxes.



Notice that the association relation can be read from the representation as
a dominance relation: A psychiatric category is associated with all symptoms
below it, and a symptom is associated with all psychiatric categories above
it.

In substantive terms Figure 2 reads as follows: The grouping of symptoms
in the graphic representation is in line with the classical distinction between
negative and positive psychotic symptoms (Andreasen and Olsen, 1982; Stu-
art, Malone, Currie, Klimidis and Minas, 1995). In particular, the left side of
the symptoms hierarchy contains extreme positive psychotic symptoms and
extreme positive affective disorder symptoms that are typical of the paranoid
schizophrenic type (PS). Whereas the right side of the symptoms hierarchy
contains negative psychotic symptoms and extreme negative affective disorder
symptoms that are typical of the manic—depressive depressed type (MDD).
Finally, notice that the paranoid schizophrenic type (PS) can be represented
as the conjunctive combination of the manic—depressive manic type (MDM)
and the simple schizophrenic type (SS), with the latter diagnostic category
being characterized by negative psychotic symptoms.

4 Possible extensions

Several possible extensions of the descriptive discriminant hierarchical classes
model may be considered.

In the present paper, D-HICLAS has been proposed as a model for two-
way Boolean data. However, the current approach can be straightforwardly
extended to rating-valued data. In particular, a D-HICLAS model for rat-
ing data would be considered as a particular constrained instance of the
HICLAS-R model family (Van Mechelen, Lombardi and Ceulemans, 2002). In
the rating—valued context the characterization problem then would boil down
to finding a simplified rating-valued matrix that approximates the charac-
terization matrix C.

Another further extension of the D-HICLAS model could be derived mod-
ifying the nature of the association relation (5). In fact, likewise the standard
two-way HICLAS model for binary data (De Boeck and Rosenberg, 1988) a
disjunctive variant of the conjunctive D-HICLAS model can be formulated
by means of the following disjunctive association rule

K R
mij = ZPik (@ Gkrbjr) (10)
k=1

r=1

Finally, a possible D-HICLAS model relaxation would imply hierarchical
representations in which objects in the same category do not necessarily share
the same attribute pattern.
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