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Abstract

& Semantic features are of different importance in concept
representation. The concept elephant may be more easily
identified from the feature <trunk> than from the feature
<four legs>. We propose a new model of semantic memory to
measure the relevance of semantic features for a concept and
use this model to investigate the controversial issue of category
specificity. Category-specific patients have an impairment in
one domain of knowledge (e.g., living), whereas the other

domain (e.g., nonliving) is relatively spared. We show that
categories differ in the level of relevance and that, when
concepts belonging to living and nonliving categories are
equated to this parameter, the category-specific disorder
disappears. Our findings suggest that category specificity, as
well as other semantic-related effects, may be explained by a
semantic memory model in which concepts are represented by
semantic features with associated relevance values. &

INTRODUCTION

Semantic memory includes knowledge about concepts
of various types, such as perceptual information (dog:
<has four legs>), functional information (dog: <is used
for hunting>), associative information (dog: <likes to
chase cats>), and encyclopedic information (dog: <may
be one of many breeds>).

Neuropsychological studies conducted on patients
with specific knowledge impairments have been a useful
source of data for addressing issues about the organiza-
tion of conceptual–semantic knowledge in the human
brain. Semantic memory may be disrupted in a number
of ways. In particular, semantic memory impairment
may be confined to concepts belonging to certain
categories; the most frequent category-specific deficit
is that for animals and foodstuffs together with preser-
vation of knowledge about manmade artifacts (Capitani,
Laiacona, Mahon, & Caramazza, 2003). Etiology is quite
heterogeneous and includes herpes encephalitis, brain
abscess, anoxia, stroke, head injury, and dementia of
Alzheimer type (DAT), while lesions typically include the
temporal lobes and, in particular, their inferior parts
(Capitani et al., 2003).

Many theories have been proposed to explain the
corpus of data collected. According to the domain-
specific theory, category specificity arises from categori-
cal organization of knowledge in the brain (Caramazza &
Shelton, 1998). Other theories explain category specific-
ity as a property emerging from differential distribution,
across categories, of sensory and functional features
(Warrington & Shallice, 1984) or of features that are

shared among many concepts (Devlin, Gonnerman,
Andersen, & Seidenberg, 1998).

Despite the vast amount of neuropsychological data
published over the last two decades, the origin of
category-specific deficits remains unclear. Here we show
that semantic relevance may be a variable that affects
category specificity. In our model, concepts are repre-
sented by a vector of semantic features, and relevance is
a measure of the contribution of semantic features to
the ‘‘core’’ meaning of a concept. The ‘‘core’’ meaning
of a concept is thought to include those semantic
features that enable to identify the concept (and to
discriminate it from other similar concepts). We assume
that subjects’ verbal description may be used to derive
these important features. For example, <has a trunk> is
a semantic feature of high relevance for the concept
elephant because most subjects use it to define ele-
phant, whereas very few use the same feature to define
other concepts. <Has 4 legs>, on the other hand, is a
semantic feature with lower relevance for the same
concept because few subjects use it in the definition of
elephant while using it in defining many other concepts.

When a set of semantic features is presented, the
overall relevance results from the sum of the individual
relevance values associated with each of the semantic
features. The concept with the highest summed rele-
vance is the one that will be retrieved. For example, the
three features <similar to a goose>, <lives in ponds>,
and <has a beak> have a total relevance of 4.94 for
duck, 3.67 for swan, and 0.74 for ostrich. The retrieved
concept will be duck, because it has the highest rele-
vance. It may happen that, in the presence of degraded
features of duck, swan is erroneously retrieved as
eventually resulting in higher relevance than duck.
Stated more plainly, overall accuracy in concept retrieval1Università di Padova, 2Università di Trento
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is poor when (a) concepts have low relevance and ( b)
they have many other semantically similar concepts with
which they may be confused.

Relevance-based approaches lie implicitly at the base
of a great deal of theorizing about semantic knowledge
( Warrington & Shallice, 1984). Although the idea seems
reasonable enough, it has not been instantiated in any
explicit model that specifies exactly how relevance is
calculated. Available quantitative models of semantic
mapping do not assume graded relevance, but rather
the presence or absence of a feature (Tversky, 1977).
We propose a new model that integrates the standard
feature-based semantic memory model with the no-
tion of relevance of a semantic feature (see Methods
section) and show that this framework has promising
applications in the study of normal and damaged se-
mantics. To anticipate our results, we find that relevance
captures the importance of a semantic feature for the
meaning of a concept, so that features that are higher in
relevance permit the identification of the target concept
with higher accuracy.

Our view is that relevance of semantic features may
influence the organization of semantic memory. After
comparing the predictions of the model to previously
published neuropsychological data, we suggest that our
model accounts for many of the known facts in seman-
tic memory disorders and, in particular, in category-
specific deficits. In summary, our results show how
relevance of semantic features may be an organizing
principle in semantic memory.

RESULTS

We mapped the relevance of semantic features for 254
concepts (43 animals, 15 musical instruments, 53 vege-
tables, 143 objects) following the procedure described in

the Methods section. A vector of semantic features, with
corresponding relevance weights, was derived for each
of these concepts. Representative results for concepts
gull and earrings are reported in Table 1.

Identification of the target concept is easier if seman-
tic features with higher relevance values are presented,
and if relevance is important to correct retrieval of a
concept, reported dissociations may be predicted by
this parameter. To examine whether category differ-
ences are due to differences in relevance, the distribu-
tional statistics of semantic features and their weights
across categories were investigated.

Semantic Features and Categories

On the database of 254 concepts, we investigated rele-
vance values across categories and across different fea-
ture types and found that categories differ in average
relevance, as reported in Table 2 and Figure 1.

Results show that living items have lower average
relevance with respect to nonliving ones. When rele-
vance is not controlled for, the identification of living is
expected to be more difficult than nonliving. This is
because the relevance of living most of the time is lower
than that of nonliving. In fact, when all concepts are
ordered for relevance, the first quartile includes 35% of
nonliving and only 7% of living items. Instead, the fourth
quartile includes 13% of nonliving and 51% of living
concepts. However, we can also predict the reverse
dissociation if nonliving items with lower relevance than
living are selected (Sacchett & Humphreys, 1992).

Perceptual and Functional Semantic Features

Each semantic feature may be classified as perceptual,
functional, or associative–encyclopedic (Caramazza &

Table 1. Representative Semantic Features of High and Medium Relevance Values for Concepts Gull and Earrings

Gull Earrings

Features with maximum relevance

<found near the sea> 1.58 <found in jewelers’ shops> 2.32

<has webbed feet> 1.43 <may be made of gold> 2.21

<has wings> 0.93 <may have clips> 2.00

Features with medium relevance

<has white feathers> 0.93 <worn by women> 1.02

<hunts for fish> 0.70 <may be worn with a necklace> 0.99

<flies> 0.67 <to adorn oneself> 0.89

Average relevance (all features) 0.68 Average relevance (all features) 1.09

Cosine similarity: rc o s( gull and earrings) .005

All analyses reported hereafter are based on relevance values computed on the full set of 254 concepts. The cosine measure of similarity (rcos)
between the two features vector for concepts gull and earrings is also reported. The cosine is a popular measure for similarity between text vectors
(see Kintsch, 2001). An important property is that it does not depend from the number of semantic features for different concepts.
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Shelton, 1998; Warrington & Shallice, 1984). Perceptual
features include ones that may be perceived, such as
parts of objects or perceptual properties (e.g., <is
sharp>). Functional features include verbs referring to
functions (e.g., <used for lighting up>). Associative–
encyclopedic features include examples like <eager for
honey>, <typical of summer>. The relevance values for
these feature types are listed in Table 3.

The living category has more perceptual attributes
and fewer functional attributes per concept than non-
living. The relevance values of perceptual and functional

attributes are lower than the corresponding figures for
nonliving, particularly for functional attributes. Rele-
vance for perceptual and functional features of living
does not differ.

In contrast, nonliving have a higher number of func-
tional attributes and a lower number of perceptual
attributes with respect to living. The importance of
functional attributes (as measured by relevance) is high-
er than that of perceptual features. Living and nonliving
do not differ with respect to associative–encyclopedic
semantic features.

Within-category Similarity

It has been suggested that high similarity between
exemplars of the same category may reduce perfor-
mance for living and musical instruments (Humphreys
& Forde, 2001).

We analyzed similarities between pairs of concepts
by calculating the standardized cosine (rcos) between
vectors of semantic attributes. We applied this proce-
dure to all pairs of concepts of each category, and an
average cosine (r̄cos), representing the average similar-
ity between all pairs of exemplars of a given category,
was calculated.

Maximum within-category similarity is found among
exemplars of musical instruments (r̄cos = .21), fol-
lowed by vegetables r̄cos = .11) and animals (r̄cos =
.096). Minimum similarity occurs between pairs of
objects (r̄cos = .033). Musical instruments have higher
within-category similarity than vegetables and animals,
t(66) = 14.3, p < .001; t(56) =18.28, p < .001, and

Table 2. Descriptive Statistics of Average Relevance Values of Concepts Belonging to Differing Categories

Category Mean Relevance Standard Deviation Range

Living (n = 96) 0.75 0.005 0.64–0.91

Vegetables (n = 53) 0.73 0.004 0.64–0.85

Animals (n = 43) 0.77 0.005 0.64–0.91

Nonliving (n =158) 0.82 0.007 0.68–1.09

Objects (n = 143) 0.82 0.007 0.68–1.09

Musical instruments (n = 15) 0.82 0.004 0.73–0.89

For every concept, average relevance, using all semantic features appearing in the definition of a concept, was computed. The average of average
relevance values for concepts are listed. Bonferroni post hoc comparisons showed that (a) average relevance of living items is lower than that of
nonliving items ( p < .001), ( b) vegetables and animals have lower relevance than objects ( p < .001), (c) animals, but not vegetables, have lower
relevance than musical instruments ( p < .001), and (d) the difference between animals and vegetables fell short of statistical significance. We also
calculated relevance of semantic feature of a subset of 25 living and 25 nonliving items matched, across categories, for word frequency (living =
1.72, nonliving = 1.784; p = .1), familiarity (living = 5.22, nonliving = 5.16; p = .39), typicality (living = 4.55, nonliving = 4.43; p = .13), and age of
acquisition (living = 3.51, nonliving = 3.44; p = .49). The relevance values of these 50 items, computed when embedded in the full set of 254 items,
yielded a lower value for living. Similar results were observed when relevance values of these 50 items was computed using these same 50 items
only. In this case, average relevance of living was 0.728, while that of nonliving was higher with a value of 0.781 ( p < .003). Therefore, computing
relevance from a set of living items of the same number as nonliving does not seem to change the basic conclusion that living have on the average
lower relevance than nonliving. To ensure that results were not biased by the unequal number of living and nonliving concepts in our set of
254 items, we also analyzed the feature norms published by Garrard, Lambon-Ralph, Hodges, and Patterson (2001) for 30 living and 32 nonliving.
Also, in this case, average relevance for living was confirmed to be lower than that for nonliving ( p < .005). In the end, semantic relevance seems to
capture aspects of concepts that are not measured by other psycholinguistic parameters. The correlation of semantic relevance with frequency is
.11, with familiarity .16, with typicality .11, and with age of acquisition .06.

Figure 1. Concepts of different categories with corresponding
average relevance. More than half nonliving items have an average
relevance above 0.8; very few living items are above this value. Musical
instruments are reported separately from nonliving.
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the same is true for vegetables and animals when
compared with objects, t(194 ) =34.87, p < .001;
t(184 ) =37.32, p < .001. Musical instruments there-
fore are more confusable than other objects, and this
may explain why some patients who are spared on
objects have impairment on musical instruments (Dix-
on, Piskopos, & Schweizer, 2001).

We may summarize the qualitative differences be-
tween living, and nonliving in the distribution of seman-
tic features as follows: (a) living have more semantic
features with lower relevance than nonliving; ( b) living
have perceptual and functional semantic features with
low relevance; (c) living have high semantic similarity
between exemplars; (d) animals and vegetables show
similar profiles in terms of relevance and within-category
similarity; (e) musical instruments have the same rele-
vance as other objects but very high similarity among
exemplars of the category.

Category Specificity and Relevance

Michelangelo

If we are correct in assuming that low relevance ac-
counts for inaccuracy in concept retrieval, then we may
expect that a category-specific patient, when presented
with a set of living and nonliving items matched for
relevance for identification, should no longer be selec-
tively impaired.

Michelangelo was the patient selected for this exper-
iment. He underwent extensive investigations and was
ideal for our purpose because he has a permanent,
severe category-specific deficit for living things that
developed after herpes simplex virus encephalitis in
1984, which resulted in bilateral lesions to the medial
and inferior parts of the temporal lobes. His semantic
deficit did not change over time or after attempts at

rehabilitation (Capitani et al., 2003; Sartori, Job, & Zago,
2002).

We presented the patient with a ‘‘naming to verbal
description’’ task. This task was selected because it has
the advantage of being directly interpretable within the
framework that we propose here. In fact the model, as
presented here, is not suited to make predictions on task
that require visual processing (e.g., picture naming). In
the ‘‘naming to verbal description’’ task, the subject is
required to identify the concept corresponding to a
spoken description consisting of a set of semantic fea-
tures. Experimental stimuli were constructed using three
semantic features for each target concept. For example,
the three features referring to camel were the following:
<has two humps>, relevance = 3.58; <lives in the
desert>, relevance = 1.85; and <used by the three
magi>, relevance = 1.58; total relevance = 7.03. The
nonliving item matched to camel for relevance was
bicycle, which was defined by the following three fea-
tures: <has handlebars>, relevance = 2.52; <two
wheels>, relevance = 2.27; <is pedaled>, rele-
vance = 2.12; total relevance = 6.95. Sixty descriptions,
30 of living and 30 of nonliving items, were derived, all
matched for the sum of the relevance values of the three
semantic attributes of the description (average sum li-
ving = 5.64, average sum nonliving = 5.65; p = .98).
According to the model, the absence of any differences
in relevance among sentences describing living and non-
living items should be equal to naming accuracy in the
two categories. Furthermore, the 30 living and 30 non-
living items were matched for frequency, familiarity,
typicality, age of acquisition, name agreement, and con-
cept agreement (minimum probability at t tests compar-
ing all 60 items on these variables, p = .24). This matching
was also important to guarantee that possible differences
in performance could not be explained by a bias in one of

Table 3. Average Number and Average Relevance of Semantic Attributes (Perceptual, Functional, Associative–Encyclopedic) for
Living and Nonliving Items

Category Perceptual Functional Associative–Encyclopedic

Living (a) (n = 96) Number = 26.4 Number = 7.3 Number = 25.6

Relevance = 0.66 Relevance = 0.63 Relevance = 0.88

Standard deviation = 0.06 Standard deviation = 0.10 Standard deviation = 0.09

Nonliving (b) (n = 143) Number = 16.9 Number = 10.1 Number = 26.6

Relevance = 0.71 Relevance = 0.83 Relevance = 0.88

Standard deviation = 0.11 Standard deviation = 0.11 Standard deviation = 0.10

t tests: (a) vs. (b), df = 237

Number 11.7, p < .001 7.30, p < .001 1.11, p = .265

Relevance 3.19, p < .001 13.19, p < .001 0.64, p = .52

Musical instruments are excluded from nonliving.
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these parameters, which are known to have an effect on
recognition (Funnell & Sheridan, 1992; Stewart, Parkin,
& Hunkin, 1992). Michelangelo was given this naming test
with the following results: living = 12/30 (corresponding
to a z = ¡3.45, computed using data collected on a group
of 6 men aged 65–70), nonliving = 14/30 correct (z =
¡3.15). Differences between living and nonliving were
not significant and fell within the control range.

A second ‘‘naming to verbal description task’’ con-
sisted of 20 descriptions of living and 20 of nonliving
concepts. As in the previous test, the relevance of the
three semantic features was equated across categories
(living = 3.78, nonliving = 3.74; p = .95). Average
concept relevance, computed using all the semantic
features, was also matched across categories.

The average relevance of all semantic features of living
was 0.79, and did not differ from that of nonliving (.79).
Michelangelo produced the correct response to 6/20
(z = ¡1.82) of living descriptions and 8/20 (z =
¡2.94) of nonliving. Again, the differences between
living and nonliving were not significant and fell within
the control range. The results of the two tests show that
no differences between the two categories can be
detected when relevance is matched across categories.

Last, we analyzed the naming errors produced by
Michelangelo in the two tasks, to verify whether errors
are facilitated by semantic similarity. Michelangelo
made a total of 60/100 naming errors. Of these, 28/60
were wrong responses, which were included in the set
of 254 concepts (e.g., duck ,! swan) and which could
be analyzed for their similarity to the target. Standard-
ized cosine similarity between target and error was
significantly higher than the similarity of the same
target with the category (which is represented by the
similarity of the target with all the other concepts of
the category), F(1,48) = 34.27, p < .001.

These data show that when Michelangelo was given a
naming task with semantic features matched for their
relevance across categories, his apparent severe impair-
ment for living disappeared. When he produced an
error in retrieving a concept after having been given
its semantic features, the error consisted of a response
that had high semantic similarity with the target.

However, the demonstration that category specific-
ity disappears in Michelangelo relies upon acceptance
of the null hypothesis and may be considered inade-
quate. In the following section, we show that category
specificity may be reversed simply by manipulating the
relevance values of semantic features.

Dementia of Alzheimer Type

Six patients with a diagnosis of probable Alzheimer were
selected. They showed a category-specific deficit for
living, which was significant and consistent across all
the four background semantic memory tests used for
assessment as reported in the Methods section (see

Table 4). Based on these results, we believe that our
six DAT patients may be considered cases of category
specificity for living.

We wanted to test our model on these patients by
trying to reverse the category specificity for living, and
thus developed a third ‘‘naming-to-definition’’ test, or-
ganized as follows:

1. Thirty concepts were used (15 living and 15 non-
living); the average relevance for living was 4.42 and for
nonliving 4.42.

2. For each concept, there were high- and low-
relevance descriptions, both with three semantic features.
Summed relevance for living and nonliving was matched
(living high relevance = 6.55; living low relevance = 2.29;
nonliving high relevance = 6.55, nonliving low rele-
vance = 2.30), and high relevance descriptions differed
significantly from low ones ( p < .001).

3. Each concept was presented twice, half the times,
definitions with high relevance were presented first, and
in the other, descriptions with low relevance were
presented first.

4. Living and nonliving were matched for all other
relevant psycholinguistic factors that may impair perfor-
mance, such as frequency ( p = .79), familiarity ( p =
.11), typicality ( p = .65), age of acquisition ( p = .29),
and name agreement ( p = .97).

This test was given to all six category-specific patients
and to the control group of 16 subjects, of comparable
age and level of education. An ANOVA with group
(controls vs. DAT), category (living vs. nonliving), and
relevance (high vs. low) showed that normal controls
were more accurate than DAT patients, F(1,20) = 89.47,
p < .001. The main effect of category was not significant,
whereas responses to high relevance items were more
accurate than low relevance ones, F(1,20) = 161.33,
p < .0001. The relevance effect, high relevance minus
low relevance, was greater for patients than for controls,
F(1,20) = 13.6, p < .001, and the same effect was larger
for living than for nonliving, F(1,20) = 19.8, p < .001.

All controls were more accurate when naming high
relevance items relative to low ones, and this pattern
was observed for both living and nonliving. DAT patients
were similar to controls in consistently showing higher
accuracy in naming high relevance items, irrespective of
category. Only one subject named nonliving with high
relevance at the same level of accuracy as low relevance
items, but behaved like the others with living.

When we compare performance on living low rele-
vance and nonliving high relevance, patients showed the
same advantage for nonliving as that observed in back-
ground category-specific tests. Instead, the pattern was
completely reversed when considering living high rele-
vance and nonliving low relevance, t(5) = 7, p < .001. All
six patients were more accurate in naming living high
relevance items than nonliving low relevance ones. This
demonstration complements that for Michelangelo, but
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in this case, it was not based on the acceptance of the
null hypothesis and further confirms our conclusion that
category specificity may emerge as a side effect of
uncontrolled relevance.

DISCUSSION

Research on category-specific semantic memory disor-
der has yielded an enormous amount of experimental
and clinical data. Current theories about the origin of
category-specific semantic impairment are unable to
account for all the clinical data. Most theories explain

selective semantic impairment as a secondary character-
istic determined by the intrinsic differences, in semantic
features, of exemplars belonging to different categories.

The sensory functional theory assumes that dissocia-
tions between living and nonliving arise from the differ-
ential contribution of sensory and functional semantic
features among concepts within the two domains. While
nonliving items are encoded by both perceptual and
functional features, living have very few functional fea-
tures and are mostly defined by perceptual features
( Warrington & Shallice, 1984). Selective impairment is
expected to emerge for living when perceptual features

Table 4. Accuracy of Controls and Six DAT Category-specific Patients on a Naming-to-Definition Task

Controls (n = 16) H Relevance (n = 30) L Relevance (n = 30) Category

Living (n = 15) 12.69/15 9.2/15 21.9/30

Nonliving (n = 15) 11.31/15 9.65/15 20.9/30

Relevance 24/30 18.9/30

DAT patients (n = 6)

Living (n = 15) 8.33/15 2.0/15 10.33/30

Nonliving (n = 15) 6.66/15 3.66/15 10.33/30

Relevance 14.99/30 5.66/30

Individual Results H Relevance L Relevance Category Effect

MR

Living 9 2 x2(1) = 0.69, ns

Nonliving 6 2

FR

Living 8 0 x2(1) = 2.58, ns

Nonliving 9 5

MS

Living 10 4 x2 (1) º 0, ns

Nonliving 7 7

AE

Living 7 3 x2(1) = 0.07, ns

Nonliving 7 2

RN

Living 10 3 x2(1) = 0.27, ns

Nonliving 7 4

VP

Living 6 0 x2 (1) º 0, ns

Nonliving 4 2

Controlled factors were category (living, nonliving) and relevance (H = high, L = low). Each of the DAT patients did not show the category effect.
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are disrupted by brain damage, as nonliving may always
benefit from unaffected functional features (Caramazza
& Shelton, 1998; Warrington & Shallice, 1984). Unlike
the sensory/functional theory, our model does not
postulate that features are organized according to type,
but rather that feature type, as well as category effects,
emerge from differences in the relevance of features.

The ‘‘correlated features’’ theory (Durrant-Peatfield,
Tyler, Moss, & Levy, 1997) is based on the assumption
that nonliving are characterized by pairs of perceptual
and functional features (e.g., <has a blade>, <is used
for cutting>), which reinforce each other in semantic
processing. Instead, living items do not have this sort of
pairings and, in cases of brain damage, this will cause an
advantage for nonliving (Tyler & Moss, 1997; De Renzi
& Lucchelli, 1994).

The ‘‘crowding’’ theory states that category specific-
ity is a consequence of the higher similarity of living
with respect to nonliving. Living may therefore be
confused more with other living, rather than nonliving
with other nonliving (Sacchett & Humphreys, 1992).

All these theories focus on explaining the impairment
for living, which is the most frequently observed, but
they seem to struggle on accounting for the whole
corpus of the collected data. In particular, a critical point
is the impairment for artifacts that have repeatedly been
documented (Capitani et al., 2003; Sacchett & Hum-
phreys, 1992).

The domain-specific hypothesis assumes that catego-
ries are not emerging characteristics but rather deter-
mined by brain organization, presumably on an
evolutionary basis (Caramazza & Shelton, 1998). It pos-
tulates physically separate and functionally independent
stores in the brain for dissociable categories of know-
ledge. It may easily account for double dissociations but
fails to explain, without further assumptions, why gen-
eral semantic features are better preserved than specific
ones (Hodges, Graham, & Patterson, 1995), or why
musical instruments may be impaired as living (Dixon
et al., 2001), and in general patterns of breakdowns
within domains.

Here, we have taken an alternative approach. In the
model we propose, concepts are assumed to be repre-
sented within a noncategorical conceptual system, and
category-specific deficits emerge as a result of differences
in the relevance of concepts, rather than as divisions in
independent stores. It assumes, as do other models
(Humphreys & Forde, 2001; Durrant-Peatfield et al.,
1997), that concepts are described by a set of semantic
features but that each of the constituent semantic features
also has an associated relevance weight that is believed to
reflect the level of contribution to the ‘‘core’’ meaning of
the concept. The model predicts that errors may arise
either because of low relevance of semantic features or
high similarity with competing concepts. Therefore, at
constant values of relevance, concepts that have many
other closely similar concepts will be more error-prone.

Relevance is different from distinctiveness as pro-
posed by the conceptual structure theory (e.g., Tyler
et al., 2000). Distinctiveness is a dimension that is not
concept-dependent since scores are high when the
feature is found in only a few concepts. Instead, the
relevance of a given semantic feature varies across
different concepts, and in a way, may be considered
concept-dependent. For example, the feature <has a
beak> has a value of 1.21 for the concept duck and of
only 0.47 for the concept swan. In this view, our model
resembles that suggested by those researchers who
advocate that psychologically plausible semantic models
should characterize features in a context-sensitive man-
ner. Tversky (1977), for example, proposed a feature-
based model of similarity, in which common features
tend to increase the perceived similarity of two concepts
and feature differences tend to diminish perceived
similarity. This author claims that feature salience plays
an important role and that it is not fixed, but varies with
context. However, his definition of salience is more
similar to distinctiveness as described above, than to
relevance as proposed by us (e.g., Tversky, 1977, p. 342).

We may assume that damage to the semantic system
affects features by reducing the degree to which they are
activated. When features with high relevance become
unavailable, errors occur in naming these items. The
more relevant a particular feature is to a given concept,
the more probable that that concept will be misnamed
when the feature is damaged and, therefore, the behav-
ioral consequence of damage is proportional to the
relevance of the lost feature. Given two prototypical
concepts, one living and one nonliving with the same
number of features, random damage of the same extent
to the two concepts will leave the living concept with a
lower residual relevance. If this model is correct, then
the damaged knowledge will reproduce the pattern that
is observed in the original sample. In other words, if
concepts are randomly sampled from categories, then
lower performance for living is expected, because living
have an average lower relevance. If, on the contrary,
relevance is matched across categories, then no differ-
ence is expected, and this is exactly what we observed.
However, we are not committed to any specific hypoth-
esis about how brain damage may be mimicked by a
neural network. Alternative hypotheses on this issue are
possible. For example, if we consider a feed-forward
neural network (e.g., Small, Hart, Nguyen, & Gordon,
1995), then features of similar relevance may be cap-
tured by the same hidden units. This suggests that focal
damage affects specific hidden units and has dispropor-
tionate effects on individual categories.

We tested predictions based on our model in two
separate investigations, one conducted on a herpes
patient and one on six DAT patients. In Michelangelo,
the herpes patient, after matching living and nonliving
items for relevance, the previously repeatedly docu-
mented advantage for nonliving failed to materialize.
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The importance of relevance in the origin of category
specificity was further confirmed in the second study,
conducted on six category-specific DAT patients, in
whom the original category-specific impairment was
reversed by manipulating the level of relevance of living
and nonliving concepts. In all the six patients who
showed impairment for living on preliminary testing,
we reported the absence of this impairment and selec-
tive impairment for nonliving when living concepts were
selected with high relevance and nonliving with low
relevance. Furthermore, the data collected here show
that the relevance effect (superiority of high relevance
semantic features in concept retrieval) is a strong effect
and cannot be explained by any other previously known
effects (e.g., typicality, familiarity, etc.).

We mentioned previously that there is no convincing
theory that can account for the wealth of empirical data
collected on category-specific patients.

To evaluate the potential of our proposal, we com-
pared the predictions of the model with previously
published neuropsychological data. A number of critical
facts about category-specificity may find an explanation
within the framework that we propose.

Impairment for Living

According to our model, this is a consequence of the
intrinsic characteristics of living items that have semantic
features that are, on average, less relevant than nonliving
ones. If matching for relevance is not carried out care-
fully, exemplars of living that have lower relevance are
likely to be selected, thus reducing response accuracy.
This is because random sampling of concepts from
categories of living and nonliving results in living having
lower relevance and consequently lower accuracy.

Impairment for Nonliving

A number of patients have been reported to be more
impaired on nonliving (18, whereas 61 are reported with
specific impairment for living; Capitani et al., 2003). Our
explanation is based on the fact that, although the
average relevance of living is significantly lower than
that of nonliving, there is an overlap between the two
distributions. In fact, 16.8% of nonliving items have an
average relevance lower than the mean relevance of
living ones. Selecting nonliving items that have lower
relevance than those of living ones used as benchmarks
will yield greater impairment for nonliving. A corollary of
this prediction is that this impairment is less frequent
than that for living and this was, in fact, observed.

Opposite Dissociations on the Same Set of Stimuli

Opposite dissociations on the same set of stimuli. Very
few such observations have been reported (Silveri et al.,

1997; Hillis & Caramazza, 1991; Sartori & Job, 1988). If
we consider that the relevance of semantic attributes is
highly influenced by individual differences, we should
expect different subjects to behave differently in re-
sponding to the same set of stimuli, depending on their
particular experience. Individual experience may change
the level of knowledge about concepts and, consequent-
ly, the constituent relevance values (Tanaka & Taylor,
1991). We acknowledge that, if two patients matched for
variables that may influence knowledge, such as age,
level of schooling, and so forth, show opposite dissoci-
ations on the same set of stimuli, then this would be
problematic for the semantic relevance model. At the
moment, in absence of any method for estimating
individual premorbid level of knowledge, this explana-
tion must be considered only tentative.

Dissociations within Living: Animals
and Vegetables

Living may not be a single category. In fact, patients with
opposite patterns of impairment for animals and vege-
tables have been reported (Caramazza & Shelton, 1998;
Forde, Francis, Riddoch, Rumiati, & Humphreys, 1997).
The distribution of semantic features according to rele-
vance easily predicts this dissociation. Not controlling
for relevance may also yield in this case items with
different average relevances.

Degrees of Impairment in Sensory and Functional
Knowledge for Living

Perceptual knowledge in living may be affected to
various degrees. Patients with category specificity for
living may be more impaired on perceptual semantic
features than on nonperceptual ones, but observations
of equal deficit have also been reported (Martin, Wiggs,
Ungerleider, & Haxby, 1996). These data are easily
explained, in our model, if we consider that living items
have perceptual and functional semantic features with
similar levels of relevance. Selection of concepts with
appropriate levels of relevance may therefore yield all
the various patterns of results.

Impaired Performance on Categories with Highly
Similar Exemplars (e.g., Musical Instruments)

It has been observed that living items may be vulnerable
because they have exemplars that may be more easily
confused with one another. In our model, the accuracy
in concept retrieval is reduced, at similar levels of
relevance, by semantic similarity between the target
and other concepts. Musical instruments, which are
characterized by high semantic similarity between exem-
plars, are expected to have a high rate of misidentifica-
tion, and this explains why musical instruments may be
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impaired as living in subjects whose object knowledge is
spared (Dixon et al., 2001).

Limitations that we can identify in this formulation of
our proposal are the following:

1. Individual differences. There is evidence for
individual differences among normals. For example
Funnell and De Mornay Davies (1996) have identified
individual variations in knowledge for animate, plants,
and artifacts, and therefore different premorbid levels
of knowledge could be at the base of some category-
specific deficit. Our model, as presented here, does
not take into account individual relevance values. In
fact, the map of relevance weights of semantic features
was computed using descriptions collected from five
subjects per concept. While this approach seems
sufficient, as a first step, to highlight major problems
in normal and abnormal semantic information retrie-
val, it could be possible to derive for each subject a
distinct matrix.

2. Functional neuroanatomy. The model, as pre-
sented here, does not address the issue of brain
instantiation of semantic processing. Its purely pro-
positional nature, however, could be used as an
interpretative framework for those studies that relate
semantic processing to gross anatomical regions. At
variance with lesion studies, functional imaging
studies on normal subjects support the view that
different brain regions mediate the identification of
living and nonliving things. The data highlight the
importance of the inferior temporal lobe for naming
animals and the left inferior frontal and middle
temporal lobes for naming tools (Martin et al.,
1995, 1996; Perani et al., 1995). Anatomical segrega-
tion of categories is usually considered as supporting
evidence for the domain specific theory. However, if
category covaries with relevance, as we have shown,
perhaps, it is the latter factor that has neuroanato-
mical specialization rather than category per se.

While acknowledging that our proposal has some
limitations, the findings are convergent and encour-
aging. Our predictions are based on the distributional
statistics deriving from the semantic features map. In
summary, concepts differ, in that living have more
properties overall and less relevance than do nonliv-
ing. Nonliving categories are typically characterized by
fewer features with higher relevance. Because low
relevance hampers concept retrieval in a ‘‘naming-
to-description’’ task, this will cause living items to be
less accurate, unless relevance is controlled for. We
have shown that, while the predicted differences over
domains were generally true, there were also consid-
erable variations across categories within domains,
which may explain less frequent dissociations, such
as selective impairment for nonliving. In this view, it
may not be necessary to assume separate domain- or
property-based organization within semantic memory

to account for even the most selective of semantic
deficits.

METHODS

A general model for the semantic relevance of concepts
is outlined, followed by a description of the procedure
that we have used to empirically map semantic features
to concepts.

Model

Our main goal was to derive a measure of relevance of
semantic features that is intended to represent its
contribution to the ‘‘core’’ meaning of a concept.
The model we propose boils down to a modified ver-
sion of the vector space model within the information-
retrieval approach ( Van Rijsbergen, 1979; Robertson &
Sparck Jones, 1977). The ‘‘raw’’ data from which the
process of extraction of the semantic features started
were ‘‘concept descriptions’’ as produced by subjects.
The final result is a vector of semantic features for every
concept, with corresponding relevance weights.

A relevance analysis transforms an I (concepts) £ J
(semantic features) intensity data matrix X into an I £ J
relevance model matrix K that represents the semantic
relevance model for the domain under investigation.
The entry xij 2 ‡ [ 0 of X denotes a degree of po-
sitive association between Feature j and Concept i,
whereas the entry kij 2 ‡ [ 0 of K denotes the rele-
vance of feature j for concept i.

The main assumption of our model is that

A1. The relevance matrix K can be decomposed
into an I £ J matrix L and a J £ J diagonal matrix1

G by means of the matrix product

K ˆ LG …1†

In Equation 1, L represents an I £ J matrix of weights
with the entry lij 2 ‡ [ 0 of L denoting the local
importance of Feature j for Concept i; hence L is called
the local importance matrix. The main diagonal
diag(G) of G represents a vector of J weights with the
entry gj 2 ‡ [ 0 of diag(G) denoting the overall
importance of Feature j for all the I concepts; hence,
G is called the global importance matrix.

L and diag(G) can be directly estimated from X by
means of two weighting mappings h , ci,

L ˆ …X†; diag…G† ˆ c…X† …2†

which act as a linking structure between X and K.
Several weighting schemes may be derived from
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information-retrieval models (Dumais, 1991) and adop-
ted, after appropriate modifications, within a relevance
analysis approach. To select the appropriate weighting
mappings h , ci, we further assume that

A2. Semantic features with higher within-concept
intensity are, in general, more pertinent to that
concept.

A3. Semantic features whose intensities are
equally distributed over all concepts are in general
less pertinent than features that are positively
associated with only few concepts.

Therefore, we define the following functions:

lij ˆ …xij† ˆ
1 ‡ log…xij† if xij > 0

0 if xij ˆ 0

8
<

: …3†

gj ˆ c… x ¢ j† ˆ 1 ‡
X1

iˆ1

pij ¢ log …pij†
log…I† …4†

(8i = 1,. . .I; 8j = 1,. . ., J) with x j and pij denoting the jth
column of X and the proportion

pij ˆ
xijPI
iˆ1 xij

…5†

respectively.
Stated more plainly, the function (xij) takes the

logarithm2 of the raw feature intensity xij, thus dam-
pening effects of large differences in intensities (Du-
mais, 1991). However, notice that (xi j), being a
monotonic function of xij, still preserves the ranking
implied by the intensity matrix X.

The mapping c(x.j) is based on the information
theoretic idea of entropy (or average uncertainty).
In particular, the normalized entropy of a feature j
( 8j = 1,. . ., J ) is given by

E…x¢j† ˆ
XI

iˆ1

pij ¢ log … pij†
log…I†

…6†

Notice that, adding E(x.j) 2 [¡1, 0] to 1 (hence, we get
c(x.j)) assigns minimum weight to features whose in-
tensities are equally distributed over concepts (i.e., where
xij=

PI
iˆ1 xij ˆ 1=I), and maximum weight to features that

are positively associated with only few concepts.
Finally, applying Equation 1, the entry kij (8i = 1,. . .,I;

8j = 1,. . ., J ) of the relevance matrix K takes the form3

kij ˆ lijgjj …7†

Therefore, a feature that captures the core meaning of a
concept will have both high local importance and high
global importance.

Mapping Semantic Features to Concepts:
An Empirical Procedure

The procedure that we have followed to extract seman-
tic features and apply the previously described model is
the following:

Database of concepts. Cued verbal descriptions of 254
concepts were collected; 43 animals, 15 musical
instruments, 53 vegetables, and 143 objects. Con-
cepts belonged to a corpus (Dell’Acqua, Lotto, &
Job, 2000) for which values for major psycholinguis-
tic parameters are available. Our subjects were asked
to describe a target concept, and descriptions were
cued by the following questions designed to over-
come the bias toward certain attributes: (a) give the
first free associated word, ( b) say how it looks like,
(c) say what it is it used for, (d) give any other
information you want to give on the concept.

Concept descriptions. Every concept was described by
five Italian-speaking subjects. The average length of
concept descriptions was 56 words. Concepts where
randomly presented to subjects. Using descriptions
from different subjects produce an ‘‘average’’
semantic description that eliminates the different
levels of semantic richness that subjects may have
developed in their experience since different cultural
level and direct experience may influence the
distribution of semantic features. However, we think
that, as a first attempt, this approach is accurate
enough to capture broad differences among cate-
gories and concepts.

From descriptions to lemmas. Free text, represented by
all the descriptions given by subjects to all
254 concepts, underwent word count. Words with
a high number of instances in the subjects’
definitions (usually function words) and words with
a single occurrence were excluded from further
analysis. It has been shown (Luhn, 1958) that word
frequency furnishes a useful measurement of word
significance. If words are ranked according to their
frequency in a text, the incapacity to discriminate
content reaches a peak at a rank order position of
halfway. Lemmatization was then performed by
collapsing all variations of basic nouns and verbs
under a single attribute (e.g., play, play-s, play-ed,
play-ing). Semantic features could be formed of
single, two, or three words (e.g., <has a tail>,
<has a long tail>).

Computation of the concepts £ semantic features
matrix. The words (lemmas) finally remaining may
be interpreted as semantic features and were used to
produce a concepts £ semantic features matrix in

448 Journal of Cognitive Neuroscience Volume 16, Number 3



which counts were made for every lemma that
appeared in every concept. The original matrix of
254 concepts £ 8200 words was reduced to a matrix of
254 concepts £ 2619 semantic features. This matrix
was then used to derive relevance weights for
semantic features.

Computation of relevance weights of semantic features
Relevance weights for semantic features were com-
puted using Equation 1 as described above in the
Model section.

The steps for deriving relevance of semantic features
from concepts are summarized in Figure 2.

Subjects

Michelangelo and Normal Controls

This patient has been extensively studied (e.g., Sartori
& Job, 1988) and critically analyzed (e.g., Capitani et al.,
2003; Humphreys & Forde, 2001). In 1984, at the age of
38 years, he was diagnosed with herpes encephalitis. He
showed a category-specific impairment for living, which
was assessed on several different tasks, including vari-
ous picture-naming tests, naming-to-verbal-description,
drawing from memory, attribute verification, and object
decision. The full testing conducted on this patient over
the years has recently been summarized (Sartori et al.,
2002). His performance was consistent over time and
across tasks in showing major impairment of the living
category. At the time of the assessment reported
here (March 2002), his performance on basic category-
specificity tests were the following: (a) picture naming:
living = 16/32, nonliving = 27/32; (b) reality decision
(yes/no): living = 20/32, nonliving = 14/16. The cate-
gory specific disorder for living was similar in magnitude
to that observed in 1988 on the same tests.

Michelangelo’s performance was compared with that
of six male control subjects of roughly the same age
(range 50–70) and cultural level (range 8–12 years of
formal education).

Dementia of Alzheimer Type and Normal Controls

Diagnosis of probable DAT was made according to
NINCDS and ADRDA criteria (McKhann et al., 1987).
One hundred eight DAT patients were given basic
neuropsychological tests and four category specificity
tests. Based on the latter (property verification, pic-
ture-naming, and two naming-to-description tests), six
patients were selected who showed significant and
consistent impairment for living over the four tests.
We report the data of these six patients in Tables 5
and 6, together with those of a group of 16 normal
controls matched with patients for age and level of
education.

The difference between accuracy on nonliving and
living was significantly higher in patients with respect to

Table 5. Basic Neuropsychological Information of the DAT
Group (with Category Specificity for Living) and of Normal
Controls

DAT (n = 6) Age Education MMSE PM PIM

Mean 77.14 4.63 18.12 1.83 1.25

Standard
deviation

5.43 2.25 3.62 0.25 0.84

Control (n = 16)

Mean 76.00 4.75 27.6 9.59 4.75

Standard
deviation

4.94 1.18 1.66 2.63 1.83

DAT vs.
control (p)

.77, ns .45, ns <.0001 <.0001 <.0001

Age and education are given in years. For both groups: MMSE
(max = 30), prose memory (PM, max = 28), phonemic incidental
memory (PIM, max = 20).

Figure 2. Step-by-step
procedure for computing
relevance values from textual
concept descriptions.
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Table 6. Background Semantic Memory Test Results for the DAT group (with Category Specificity for Living) and of Normal
Controls

DAT (n = 6) PV (n = 80) PN (n = 64) NtD(a) (n = 56) NtD(b) (n = 60)

Living (mean %) 48.54 33.95 22.93 37.26

Nonliving (mean %) 67.73 59.94 52.13 72.26

Living vs. nonliving (min %) 16.25 25.00 26.04 30.00

Individual Results PV PN NtD(a) NtD(b)

MR

Living 57.5 21.9 31.3 30

Nonliving 76.6 46.9 58.3 63.3

x2
(1 ) 5.75, p < .05 4.42, p < .05 4.11, p < .05 6.68, p < .01

FR

Living 58.8 40.6 18.8 33.3

Nonliving 85.9 65.6 50 80

x2
(1 ) 12.75, p < .01 4.02, p < .05 6.14, p < .05 6.65, p < .01

MS

Living 53.8 15.6 28.1 36.7

Nonliving 71.9 46.9 58.3 73.3

x2
(1 ) 4.95, p < .05 7.28, p < .01 5.16, p < .05 4.36, p < .05

AE

Living 47.5 37.5 25 43.3

Nonliving 65.6 62.5 58.3 73.3

x2
(1 ) 4.66, p < .05 4.0, p < .05 6.67, p < .01 5.54, p < .05

RN

Living 52.5 40.6 28.1 56.7

Nonliving 68.8 65.6 54.2 86.7

x2
(1 ) 3.92, p < .05 4.01, p < .05 3.97, p < .05 6.64, p < .05

VP

Living 21.3 46.9 6.25 23.3

Nonliving 37.5 71.9 33.3 56.7

x2
(1 ) 4.62, p < .05 4.14, p < .05 6.79, p < .01 6.92, p < .01

Control (n = 16) PV (n = 80) PN (n = 64) NtD(a) (n = 56) NtD(b) (n = 60)

Living (mean %) 88.01 82.84 78.53 88.86

Nonliving (mean %) 87.10 82.66 73.45 93.84

Living vs. nonliving (range %) [¡10.9, 5.9] [¡9.3, 15.6] [¡15.6, 20.8] [¡3.0, 0.2]

DAT vs. control p < .001 p < .001 p < .001 p < .001

PV = property verification, PN = picture naming, NtD(a) = naming-to-definition (Lambon Ralph, Howard, Nightingale, & Ellis, 1998, adapted and
translated), NtD(b) = naming-to-definition (Bisiacchi & Mondini, personal communication).
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normal subjects. This pattern was observed in all four
background semantic tests.

The six DAT patients therefore showed a clear,
well-defined, category-specific deficit that could be ob-
served in a variety of semantic tasks, such as property
verification, picture-naming, and naming-to-descrip-
tion. This category effect was consistently shown by
all patient: The minimum magnitude of the impair-
ment for living observed in them was well outside the
range of the corresponding figure observed in normal
subjects.

Reprint requests should be sent to Giuseppe Sartori, Diparti-
mento di Psicologia Generale, Universitá di Padova, via Venezia
8, 35100 Padova, Italy, or via e-mail: giuseppe.sartori@unipd.it.

Notes

1. A matrix A is a diagonal matrix if (a) A is a square matrix
and (b) ai j =0 whenever i 6ˆ j.
2. In this article, all logs are base 2.
3. As G is a diagonal matrix, Equation 7 can be considered in
place of the standard product kij ˆ

P J
hˆ1 lihghj:
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